当前位置: 首页 > news >正文

免费旅游网站模板济南做seo排名

免费旅游网站模板,济南做seo排名,app推广渠道,高端品牌运动鞋本文并非基于微调训练模型,而是从头开始训练出一个全新的大语言模型的硬核教程。看完本篇,你将了解训练出一个大模型的环境准备、数据准备,生成分词,模型训练、测试模型等环节分别需要做什么。AI 小白友好~文中代码可以直接实操运…

本文并非基于微调训练模型,而是从头开始训练出一个全新的大语言模型的硬核教程。看完本篇,你将了解训练出一个大模型的环境准备、数据准备,生成分词,模型训练、测试模型等环节分别需要做什么。AI 小白友好~文中代码可以直接实操运行。

通过这篇文章,你可以预训练一个全新大语言模型。注意是全新的模型,不是微调。

全新训练的好处是训练的数据、训练的参数都是可修改的,通过调试运行我们可以更好的理解大模型训练过程。我们可以用特定类型数据的训练,来完成特定类型数据的输出。

技术交流

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

相关资料、数据、技术交流提升,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:mlc2060,备注:来自CSDN + 技术交流
方式②、微信搜索公众号:机器学习社区,后台回复:加群

关于大模型已经有很多文章,微调模型的文章比较多,全新预训练全新模型的文章很少。个人觉得有的也讲的很复杂,代码也很难跑通。本文不会讲的很复杂,代码也很容易运行。仅用61行代码,就能训练出一个全新大语言模型。

图片

本文以代码为主,运行代码需要 Python 环境。

01 准备训练环境

我的训练环境基于腾讯云的 GPU 机器。

地址:https://cloud.tencent.com/product/gpu

  • GPU类型:GN7.2XLARGE32 T4 显卡:1颗 显存:16GB;
  • python 3.11;
  • requirements.txt:
tokenizers==0.13.3
torch==2.0.1
transformers==4.30.

02 准备训练数据

首先我们要为训练准备数据,比如我就想基于《三国演义》训练一个模型。三国演义下载地址:

https://raw.githubusercontent.com/xinzhanguo/hellollm/main/text/sanguoyanyi.txt

图片

03 训练分词器

分词(tokenization)是把输入文本切分成有意义的子单元(tokens)。通过以下代码,根据我们的数据生成一个新的分词器:

from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
from tokenizers.normalizers import NFKC, Sequence
from tokenizers.pre_tokenizers import ByteLevel
from tokenizers.decoders import ByteLevel as ByteLevelDecoder
from transformers import GPT2TokenizerFast# 构建分词器 GPT2 基于 BPE 算法实现
tokenizer = Tokenizer(BPE(unk_token="<unk>"))
tokenizer.normalizer = Sequence([NFKC()])
tokenizer.pre_tokenizer = ByteLevel()
tokenizer.decoder = ByteLevelDecoder()special_tokens = ["<s>","<pad>","</s>","<unk>","<mask>"]
trainer = BpeTrainer(vocab_size=50000, show_progress=True, inital_alphabet=ByteLevel.alphabet(), special_tokens=special_tokens)
# 创建 text 文件夹,并把 sanguoyanyi.txt 下载,放到目录里
files = ["text/sanguoyanyi.txt"]
# 开始训练了
tokenizer.train(files, trainer)
# 把训练的分词通过GPT2保存起来,以方便后续使用
newtokenizer = GPT2TokenizerFast(tokenizer_object=tokenizer)
newtokenizer.save_pretrained("./sanguo")

运行时显示如下图:

图片

成功运行代码后,我们在 sanguo 目录生成如下文件:

merges.txt
special_tokens_map.json
tokenizer.json
tokenizer_config.json
vocab.json

现在我们已经成功训练了一个大语言模型的分词器。

04 训练模型

利用下面代码进行模型训练:

from transformers import GPT2Config, GPT2LMHeadModel, GPT2Tokenizer
# 加载分词器
tokenizer = GPT2Tokenizer.from_pretrained("./sanguo")
tokenizer.add_special_tokens({"eos_token": "</s>","bos_token": "<s>","unk_token": "<unk>","pad_token": "<pad>","mask_token": "<mask>"
})
# 配置GPT2模型参数
config = GPT2Config(vocab_size=tokenizer.vocab_size,bos_token_id=tokenizer.bos_token_id,eos_token_id=tokenizer.eos_token_id
)
# 创建模型
model = GPT2LMHeadModel(config)
# 训练数据我们用按行分割
from transformers import LineByLineTextDataset
dataset = LineByLineTextDataset(tokenizer=tokenizer,file_path="./text/sanguoyanyi.txt",block_size=32,# 如果训练时你的显存不够# 可以适当调小 block_size
)
from transformers import DataCollatorForLanguageModeling
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False, mlm_probability=0.15
)from transformers import Trainer, TrainingArguments
# 配置训练参数
training_args = TrainingArguments(output_dir="./output",overwrite_output_dir=True,num_train_epochs=20,per_gpu_train_batch_size=16,save_steps=2000,save_total_limit=2,
)
trainer = Trainer(model=model,args=training_args,data_collator=data_collator,train_dataset=dataset,
)
trainer.train()
# 保存模型
model.save_pretrained('./sanguo')

运行比较耗时,显示训练数据如下图:

图片

成功运行代码,我们发现 sanguo 目录下面多了三个文件:

config.json
generation_config.json
pytorch_model.bin

现在我们就成功生成训练出基于《三国演义》的一个大语言模型。

05 测试模型

我们用文本生成,对模型进行测试代码如下:

from transformers import pipeline, set_seed
generator = pipeline('text-generation', model='./sanguo')
set_seed(42)
txt = generator("吕布", max_length=10)
print(txt)

运行显示模型输出了三国相关的文本:“吕布十二回 张翼德 张翼德时曹操 武侯计计计”

图片

再测试一条:

txt = generator("接着奏乐", max_length=10)
print(txt)

“接着奏乐\u3000却说曹操引军因二人”

图片

这内容不忍直视,如果想优化,我们也可以基于全新的模型进行微调训练;我们也可以适当地调整下训练参数,以达到较好的效果。

06 完整代码

以下是完整代码,代码地址:

https://github.com/xinzhanguo/hellollm/blob/main/sanguo.py

linux 中运行方法:

# 创建环境
python3 -m venv ~/.env
# 加载环境
source ~/.env/bin/activate
# 下载代码
git clone git@github.com:xinzhanguo/hellollm.git
cd hellollm
# 安装依赖
pip install -r requirements.txt
# 运行代码
python sanguo.py

以上我们就完成一个全新的模型训练。代码去除注释空行总共61行。

本文代码模型是基于 GPT2 的,当然你也可以基于 LLama 或者 Bert 等模型去实现全新的大语言模型。

代码虽然不是很多,但是如果初次尝试运行的话你也许会遇到很多问题,比如环境搭建。为了避免其他烦恼,我建议用 docker 方式运行代码:

# 下载代码
git clone git@github.com:xinzhanguo/hellollm.git
cd hellollm
# 编译镜像
docker build -t hellollm:beta .
# 可以选择以GPU方式运行
# docker run -it --gpus all hellollm:beta sh
docker run -it hellollm:beta sh
python sanguo.py

更多代码可以参考:Hello LLM!

https://github.com/xinzhanguo/hellollm

以上就是本篇文章的全部内容,欢迎转发分享。

http://www.hengruixuexiao.com/news/18924.html

相关文章:

  • 网上做汽配生意的网站好用吗
  • 网站的后期维护自己怎么做百度网盘网页版登录
  • 网站备案变更公司名称yandex搜索入口
  • 做网站接单企业网站优化的三层含义
  • 做机械毕业设计哪个网站好网络销售怎么找客户
  • 旅游网站的市场需求怎么做介绍谷歌排名推广公司
  • 网站怎么做才是对搜索引擎友好页面设计
  • 萧山城市建设网站最近新闻摘抄
  • ps转页面wordpress插件企业网站优化服务
  • 用顶级域名做网站好吗百度seo策略
  • 网站开发项目描述收录网站是什么意思
  • 郑州做网站哪个网络营销方案的范文
  • 模拟人生4做游戏下载网站搜索引擎市场份额2023
  • 网站制作先学什么百度权重域名
  • 用nodejs做的网站青岛做网络推广的公司有哪些
  • 济宁网站建设 优化培训科技网站建设公司
  • WordPress登录不进seo建设者
  • 求职网站建设如何完善百度模拟点击软件判刑了
  • 手机网站和电脑网站一样吗适合口碑营销的产品
  • 静态网站做淘宝客线上电商怎么做
  • 互诺 外贸网站建设搜索引擎推广方法
  • 沈阳网站排名seo站长工具备案查询
  • 视频网站开发计划书免费域名解析平台
  • 做动态网站 语音表达内蒙古最新消息
  • 合肥的网站建设州百度网站排名关键词整站优化
  • 河南宝盈建设工程有限公司网站湖南省人民政府官网
  • 国外有没有做物理小实验的网站四川seo关键词工具
  • 杭州租房网站建设济宁seo推广
  • wordpress弱密码seo渠道是什么意思
  • 北京网站关键词友情链接的形式有哪些