当前位置: 首页 > news >正文

apmserve设置多个网站域名信息查询系统

apmserve设置多个网站,域名信息查询系统,建筑木模板国家标准,怎样加强公司网站建设使用一个大语言模型对另一个大语言模型进行“调教”(通常称为微调或适配),是一种常见的技术手段,用于让目标模型更好地适应特定的任务、领域或风格。以下是基于搜索结果整理的详细步骤和方法: 1.准备工作 安装必要的…

使用一个大语言模型对另一个大语言模型进行“调教”(通常称为微调或适配),是一种常见的技术手段,用于让目标模型更好地适应特定的任务、领域或风格。以下是基于搜索结果整理的详细步骤和方法:

1.准备工作

安装必要的库

• Transformers:用于加载和训练模型。

• Datasets:用于处理数据集。

• PEFT:用于微调,特别是LoRA(Low-Rank Adaptation)等技术。

• Accelerate:用于优化训练过程。

• ModelScope:用于下载和加载模型(国内用户)。

• SwanLab:用于可视化训练过程。

pip install transformers datasets peft accelerate modelscope swanlab

2.数据准备

下载数据集
使用datasets库下载或加载数据集。如果数据集较大或需要本地存储,可以手动下载并加载。

from datasets import load_dataset# 如果数据集在 Hugging Face 上
dataset = load_dataset("your_dataset_name", split="train")# 如果数据集在本地
dataset = load_dataset("json", data_files="path/to/your/dataset.json", split="train")

数据预处理
将数据集转换为适合模型输入的格式。通常需要对文本进行分词,并将标签转换为模型可理解的格式。

from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("base_model_name")
MAX_LENGTH = 512  # 根据显存调整def preprocess_function(examples):inputs = tokenizer(examples["text"], truncation=True, max_length=MAX_LENGTH)labels = tokenizer(examples["label"], truncation=True, max_length=MAX_LENGTH)return {"input_ids": inputs["input_ids"],"attention_mask": inputs["attention_mask"],"labels": labels["input_ids"]}tokenized_dataset = dataset.map(preprocess_function, batched=True)

3.模型准备

下载并加载基础模型
使用transformers库加载基础模型。如果使用国内模型,可以通过ModelScope下载。

from transformers import AutoModelForCausalLM, AutoTokenizerbase_model = "base_model_name"  # 替换为实际模型名称
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(base_model)

设置量化配置
如果需要在低显存设备上运行,可以对模型进行量化。

from transformers import BitsAndBytesConfigquant_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_quant_type="nf4",bnb_4bit_compute_dtype=torch.float16,bnb_4bit_use_double_quant=False,
)
model = AutoModelForCausalLM.from_pretrained(base_model, quantization_config=quant_config)

应用LoRA配置
LoRA 是一种高效的微调方法,适用于大模型。

from peft import LoraConfig, TaskType, get_peft_modellora_config = LoraConfig(task_type=TaskType.CAUSAL_LM,target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],inference_mode=False,r=8,  # LoRA 的秩lora_alpha=32,lora_dropout=0.1
)
model = get_peft_model(model, lora_config)

4.训练模型

设置训练参数
使用transformersTrainingArguments设置训练参数。

from transformers import TrainingArgumentstraining_args = TrainingArguments(output_dir="./results",num_train_epochs=3,per_device_train_batch_size=4,gradient_accumulation_steps=4,learning_rate=2e-4,save_steps=500,logging_steps=500,evaluation_strategy="steps",eval_steps=500,save_total_limit=2,load_best_model_at_end=True,metric_for_best_model="accuracy",greater_is_better=True,save_on_each_node=True,bf16=True,  # 如果使用 Ampere 架构以下的显卡,可以使用 fp16
)

创建训练器
使用transformersTrainerSFTTrainer进行训练。

from transformers import Trainertrainer = Trainer(model=model,args=training_args,train_dataset=tokenized_dataset,tokenizer=tokenizer,
)
trainer.train()

5.保存和加载模型

保存模型
训练完成后,保存模型和分词器。

model.save_pretrained("path/to/save/model")
tokenizer.save_pretrained("path/to/save/tokenizer")

加载模型
加载保存的模型进行推理。

from transformers import AutoModelForCausalLM, AutoTokenizermodel = AutoModelForCausalLM.from_pretrained("path/to/save/model")
tokenizer = AutoTokenizer.from_pretrained("path/to/save/tokenizer")# 进行推理
prompt = "Who is Leonardo Da Vinci?"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))

6.使用 LangChain 进行 Prompt 工程
如果需要进一步优化模型的输出,可以使用 LangChain 框架进行 Prompt 工程。通过设计合适的提示词模板和输入输出接口,可以显著提升模型的性能。

from langchain.prompts import PromptTemplate
from langchain.llms import LLM# 创建提示词模板
template = """你是一个专业的{domain}专家,回答以下问题:
{question}
"""
prompt = PromptTemplate(input_variables=["domain", "question"], template=template)# 使用模型进行推理
llm = LLM(model=model, tokenizer=tokenizer)
response = llm(prompt.format(domain="历史", question="谁是达芬奇?"))
print(response)

7.可视化训练过程
使用 SwanLab 记录训练过程并可视化。

from swanlab.integration.huggingface import SwanLabCallbacktrainer = Trainer(model=model,args=training_args,train_dataset=tokenized_dataset,tokenizer=tokenizer,callbacks=[SwanLabCallback()],
)
trainer.train()

总结
通过上述步骤,你可以使用一个大语言模型对另一个大语言模型进行微调,使其更好地适应特定的任务或领域。微调的关键在于数据准备、模型选择、量化配置、LoRA 应用以及训练参数的设置。此外,LangChain 框架可以进一步优化模型的输出,提升其在实际应用中的表现。

http://www.hengruixuexiao.com/news/50616.html

相关文章:

  • 宝塔wordpress ssl证书seo搜索引擎优化推荐
  • 公司做网站注意什么今天微博热搜前十名
  • 想学网站建设 如何开始在哪买网站链接
  • wordpress获取主题路径河南网站建设优化技术
  • excel做网站二维码简述网络营销的特点及功能
  • 做网站信科网站建设长沙互联网推广公司
  • 目前做win7系统最好的网站山西seo
  • 做设计的搜素材上什么网站seo推广营销公司
  • fusion app百度爱采购怎么优化排名
  • 临漳网站制作提升关键词
  • 用AIDE怎么建设网站北京推广优化公司
  • wordpress模板页面说明上海企业seo
  • 旅游网网站建设系统优化
  • 宿迁558网络专业做网站pageadmin建站系统
  • 做背景图获取网站设计网站logo
  • 乡村旅游网站的建设磁力搜索器kitty
  • 柳市做网站网站管理系统
  • 太原seo报价seo网站建设优化
  • 网页和网站的区别成功营销十大经典案例
  • 网站流量统计平台深圳在线制作网站
  • 高校 门户网站 建设背景网络营销模式有哪些
  • 免费ui设计网站百度账号客服24小时人工电话
  • 我想做app推广怎么做seo课
  • 后台查看网站容量软文发稿公司
  • 企业网站怎么制作市场营销方案怎么写
  • 无锡网站推seo关键词排名优化官网
  • 上海企业网站制作电话宁波seo推广优化
  • 网站建设简单个人主页淘宝运营培训班学费大概多少
  • 巩固网站访客量利尔化学股票
  • 宜昌市住房城乡建设网站互联网广告管理暂行办法