当前位置: 首页 > news >正文

苏州建站仿站优化设计答案四年级上册语文

苏州建站仿站,优化设计答案四年级上册语文,网站未备案被阻断怎么做,有没有网上做任务赚钱的网站【深度学习基础模型】极限学习机(Extreme Learning Machines, ELM)详细理解并附实现代码。 【深度学习基础模型】极限学习机(Extreme Learning Machines, ELM)详细理解并附实现代码。 文章目录 【深度学习基础模型】极限学习机&a…

【深度学习基础模型】极限学习机(Extreme Learning Machines, ELM)详细理解并附实现代码。

【深度学习基础模型】极限学习机(Extreme Learning Machines, ELM)详细理解并附实现代码。


文章目录

  • 【深度学习基础模型】极限学习机(Extreme Learning Machines, ELM)详细理解并附实现代码。
  • 1. 算法提出
  • 2. 概述
  • 3. 发展
  • 4. 应用
  • 5. 优缺点
  • 6. Python代码实现
  • 7. 总结


参考地址:https://www.asimovinstitute.org/neural-network-zoo/
论文地址:https://www.sciencedirect.com/science/article/pii/S0925231206000385
Extreme learning machine: Theory and applications

欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!

1. 算法提出

极限学习机(Extreme Learning Machine, ELM)由Guang-Bin Huang于2006年提出。ELM是一种针对单隐层前馈神经网络(SLFN)的快速学习算法。与传统的前馈神经网络(FFNN)不同,ELM不需要通过反向传播算法(Backpropagation)训练而是通过随机生成的权重和偏置,并在单步计算中通过最小二乘法拟合输出层权重

2. 概述

ELM的核心思想是使用随机初始化的输入层权重和隐藏层神经元的偏置,并通过最小二乘法直接计算出输出层的权重。由于不需要逐步调整权重(如反向传播中的梯度下降),ELM的训练速度非常快,特别适合处理大规模数据

ELM网络结构如下:

  • 输入层:与传统FFNN类似,将输入数据传递给网络。
  • 隐藏层:随机初始化的权重和偏置,通常不进行调优。
  • 输出层:通过最小二乘法计算得到最终权重,用于拟合目标值。

3. 发展

ELM自提出以来,因其计算效率高,逐渐引起了广泛关注。随着深度学习的崛起,ELM的研究方向也发生了变化,主要集中在以下几方面:

  • 改进ELM结构:为了提高泛化能力,一些研究提出了正则化极限学习机(Regularized ELM)和在线极限学习机(Online ELM)。
  • 应用扩展:ELM逐渐在分类、回归、时间序列预测等领域得到应用,并逐步结合到集成学习等现代机器学习方法中。

4. 应用

ELM因其快速训练的特性,在多种场景中具有优势,常见的应用包括:

  • 图像识别:ELM可用于高维特征的快速分类。
  • 回归分析:在数据拟合和预测问题中,ELM通过最小二乘法快速生成回归模型。
  • 实时控制:由于训练速度快,ELM适用于需要实时响应的控制系统。

5. 优缺点

优点:

  • 训练速度快:ELM不依赖梯度下降,而是通过一次性求解输出层权重,速度远超传统的前馈神经网络。
  • 避免局部最优问题:ELM不通过迭代优化算法,因此避免了反向传播中常见的局部最优问题。

缺点:

  • 随机性较高:ELM的输入层和隐藏层权重是随机生成的,这可能导致模型的表现不稳定。
  • 表达能力有限:由于缺少反向传播和递归连接,ELM的表达能力不如深层神经网络。

6. Python代码实现

以下是一个简单的ELM分类实现示例:

import numpy as np
from sklearn.datasets import make_classification
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 定义极限学习机类
class ExtremeLearningMachine:def __init__(self, input_size, hidden_size, activation='sigmoid'):self.input_size = input_sizeself.hidden_size = hidden_sizeself.activation = self._get_activation_function(activation)# 随机初始化输入层权重和偏置self.input_weights = np.random.randn(self.input_size, self.hidden_size)self.biases = np.random.randn(self.hidden_size)def _get_activation_function(self, activation):if activation == 'sigmoid':return lambda x: 1 / (1 + np.exp(-x))elif activation == 'tanh':return np.tanhelse:raise ValueError("Unsupported activation function.")def fit(self, X, y):# 隐藏层输入H = self.activation(np.dot(X, self.input_weights) + self.biases)# 输出层权重通过最小二乘法计算self.output_weights = np.dot(np.linalg.pinv(H), y)def predict(self, X):H = self.activation(np.dot(X, self.input_weights) + self.biases)return np.dot(H, self.output_weights)# 生成模拟数据集
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)
y = y.reshape(-1, 1)  # 转换为列向量# 数据预处理
scaler = StandardScaler()
X = scaler.fit_transform(X)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 初始化ELM
elm = ExtremeLearningMachine(input_size=X_train.shape[1], hidden_size=50, activation='sigmoid')# 训练ELM
elm.fit(X_train, y_train)# 预测并评估
y_pred = elm.predict(X_test)
y_pred = np.where(y_pred > 0.5, 1, 0)  # 二分类阈值为0.5accuracy = accuracy_score(y_test, y_pred)
print(f"ELM分类准确率: {accuracy * 100:.2f}%")

代码解释:

  • ExtremeLearningMachine类:这是ELM的实现类,包含了输入层权重和隐藏层偏置的随机初始化。激活函数可以选择sigmoidtanh
  • fit方法:利用最小二乘法计算输出层权重。np.linalg.pinv用于计算伪逆矩阵,以求解输出层的最佳权重。
  • predict方法:根据输入数据和已训练的输出层权重,计算预测值。
  • 数据集生成:使用make_classification生成一个简单的二分类数据集,并使用StandardScaler进行标准化。
  • 训练和评估:在训练集上训练ELM模型,并在测试集上进行预测,通过accuracy_score评估模型准确率。

7. 总结

极限学习机(ELM)以其快速训练的特点,在大规模数据和实时系统中表现出色。虽然ELM在表达能力上不如深层神经网络,但其通过随机权重和最小二乘法求解输出层权重,大幅提升了计算速度,特别适合对速度要求高的应用场景

http://www.hengruixuexiao.com/news/46417.html

相关文章:

  • 学校网站建设的优势和不足semir
  • 网站备案 每年网络广告投放公司
  • 网站域名迁移公告网络营销介绍
  • 个人做网站赚钱优化用户体验
  • 苍强广州网站建设公司高清视频线和音频线的接口类型
  • 做网页赚钱的网站seo是什么职业岗位
  • 外贸网站建设海外推广百度工具
  • 网址大全123下载apk沈阳关键词优化报价
  • 建设网站费用要进固定资产吗如何制作网址
  • 个人做网站 需要学什么只是百度收录网站
  • 企业网站建设参考资料属于b2b的网站有哪些
  • 离线 wordpress seo won
  • 做哪个网站的人多大型网站建设平台
  • 以前做的网站怎么才能登陆后台快速seo关键词优化方案
  • 网站建设报告心得体会佛山网站优化软件
  • 摄影师网站制作时事新闻
  • 新疆电信网站备案怎么创建一个属于自己的网站
  • 网页设计相关网站百度推广培训
  • 哪个网站建站好百度广告标识
  • 武当王也高清壁纸网站seo站长工具
  • 风雨同舟网站建设人工智能培训一般多少钱
  • 江门好的建站网站新闻最近的新闻
  • 网站子站点是什么意思源码网
  • 教育网站建设方案宁波seo基础入门
  • 网站配色教程网络广告营销案例分析
  • 室内装潢装修学校武汉关键词seo排名
  • 数据库策略网站推广的有效方法有百度帐号注册
  • 营销型网站教程网站制作公司排名
  • 龙湾区网站建设公司哪家好百度推广用户注册
  • akcms做的网站潍坊seo培训