erp .net网站开发重庆森林电影完整版
目录
1. 哈希概念
2.哈希冲突
3.哈希函数
4.哈希冲突解决
4.1闭散列
4.1.1何时扩容?如何扩容?
4.1.2线性探测
4.1.3二次探测
4.2开散列(哈希桶)
4.2.1概念
4.2.2开散列增容
1. 哈希概念
- 顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即 O(logN),搜索的效率取决于搜索过程中元素的比较次数
- 理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素
- 如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素
- 当向该结构中:
1.插入元素
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
2.搜索元素
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键 码相等,则搜索成功
3.该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table) (或者称散列表)
2.哈希冲突
对于两个数据元素的关键字k_i和k_j(i != j),有k_i != k_j,但有:Hash(k_i) == Hash(k_j)
- 即:不同关键字通过相同哈希函数计算出相同的哈希地址,该种现象称为 哈希冲突 或 哈希碰撞
- 把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”
3.哈希函数
引起哈希冲突的一个原因可能是:哈希函数设计不够合理
哈希函数设计原则:
- 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
- 哈希函数计算出来的地址能均匀分布在整个空间中
- 哈希函数应该比较简单
常见哈希函数:
1.直接定址法 – (常用) --> 不存在哈希冲突
- 取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
- 优点:简单、均匀
- 缺点:需要事先知道关键字的分布情况
- 使用场景:适合查找比较小且连续的情况
2.除留余数法 – (常用) --> 存在哈希冲突,重点解决哈希冲突
- 设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数
- 按照哈希函数:Hash(key) = key% p (p<=m),将关键码转换成哈希地址
3.平方取中法 – (了解)
- 假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址;
- 再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址
- 平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况
4.折叠法 – (了解)
- 折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址
- 折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况
5.随机数法 – (了解)
- 选择一个随机函数,取关键字的随机函数值为它的哈希地址
- 即H(key) = random(key),其中 random为随机数函数
注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突
4.哈希冲突解决
解决哈希冲突两种常见的方法是:闭散列和开散列
4.1闭散列
闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?
4.1.1何时扩容?如何扩容?
1.散列表的载荷因子定义为:α = 填入表中的元素个数 / 散列表的长度
- α越大,表中元素越多,产生冲突概率越大
- α越小,表明元素越少,产生冲突概率越小
- 一般不要超过0.7~0.8
2.什么时候扩容? --> 负载因子到一个基准值就扩容
- 基准值越大,冲突越多,效率越低,空间利用率越高
- 基准值越小,冲突越少,效率越高,空间利用率越低
4.1.2线性探测
线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止
1.插入
-
通过哈希函数获取待插入元素在哈希表中的位置
-
如果该位置中没有元素则直接插入新元素
-
如果该位置中有元素发生哈希冲突, 使用线性探测找到下一个空位置,插入新元素
2.删除
- 采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素,会影响其他元素的搜索
- 比如删除元素4,如果直接删除掉,44查找起来可能会受影响
- 因此线性探测采用标记的伪删除法来删除一个元素
4.1.3二次探测
1.线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找
2.因此二次探测为了避免该问题,找下一个空位置的方法为:
- H_i = (H_0 + i^2 ) % m 或者 H_i = (H_0 - i^2 ) % m (i = 1,2,3**…)**
- H_0是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小
3.研究表明:
- 当表的长度为质数且表载荷因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次
- 因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容
因此:闭散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷
namespace CH1
{enum STATE{EXIST,EMPTY,DELETE};template<class K>struct DefaultHashFunc{size_t operator()(const K& key){return (size_t)key;}};template<>//特化struct DefaultHashFunc<string>{size_t operator()(const string& str){int sum = 0;for (auto& x : str){sum *= 131;sum += x;}return sum;}};template<class K, class V>struct HashDate{pair<K, V> _kv;STATE _state = EMPTY;};template<class K, class V, class HashFunc = DefaultHashFunc<K>>class HashTable{public://构造函数HashTable(){_table.resize(10);}//插入bool insert(const pair<K, V>& kv){//负载因子到了就扩容if ((double)n / _table.size() >= 0.7){size_t newsize = _table.size() * 2;HashTable<K, V> newtable;//开创一个新表,将原来的数据,都移过来,并且重新赋予位置newtable._table.resize(newsize);//将原来的数据移过来for (size_t i = 0; i < _table.size(); i++){if (_table[i]._state == EXIST){newtable.insert(_table[i]._kv);}}//两表交换,新创建的表,出了作用域会被销毁_table.swap(newtable._table);}HashFunc hf;// 哈希地址计算size_t hashnum = hf(kv.first) % _table.size();while (_table[hashnum]._state == EXIST)//找到空{hashnum += 1;hashnum %= _table.size();}_table[hashnum]._kv = kv;_table[hashnum]._state = EXIST;++n;return true;}HashDate<const K, V>* Find(const K& key){HashFunc hf;size_t hashi = hf(key) % _table.size();while (_table[hashi]._state != EMPTY){if (_table[hashi]._state == EXIST && _table[hashi]._kv.first == key){return (HashDate<const K, V>*) & _table[hashi];}hashi++;hashi %= _table.size();}return nullptr;}bool erase(const K& key){HashDate<K, V>* ret = Find(key);if (ret){ret->_state = DELETE;n--;}else{return false;}}void printf(){for (size_t i = 0; i < _table.size(); i++){cout << _table[i]._kv.first << " ";}}private:vector<HashDate<K, V>> _table;size_t n = 0;//记录数据有效数据};
}
4.2开散列(哈希桶)
4.2.1概念
开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素
4.2.2开散列增容
- 桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容,那该条件怎么确认呢?
- 开散列最好的情况是:每个哈希桶中刚好挂一个节点, 再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容
4.2.3开散列思考
-
只能存储key为整形的元素,其他类型怎么解决?
-
哈希函数采用处理余数法,被模的key必须要为整形才可以处理,此处提供将key转化为整形的方法::利用仿函数
-
除留余数法,最好模一个素数,如何每次快速取一个类似两倍关系的素数?‘
4.2.4开散列与闭散列比较
应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销
事实上:
- 由于开放定址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <= 0.7
- 而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间
namespace CH2
{template<class K>struct DefaultHashFunc{size_t operator()(const K& key){return (size_t)key;}};template<>struct DefaultHashFunc<string>{size_t operator()(const string& str){int sum = 0;for (auto& x : str){sum *= 131;sum += x;}return sum;}};template<class K,class V>struct HashNode{pair<K, V> _kv;HashNode<K, V>* _next;HashNode(const pair<K,V>& kv):_kv(kv),_next(nullptr){}};template<class K, class V, class HashFunc= DefaultHashFunc<K>>class HashTable{typedef HashNode<K, V> Node;public:HashTable(){_table.resize(10, nullptr);}~HashTable(){for (size_t i = 0; i < _table.size(); i++){Node* cur = _table[i];//释放每一个节点while (cur){Node* next = cur->_next;delete cur;cur = next;}_table[i] = nullptr;}}bool insert(const pair<K,V>& kv){HashFunc ht;//扩容if (_n == _table.size()){size_t newhashi = 2 * _table.size();vector<Node*> newtable;newtable.resize(newhashi,nullptr);for (size_t i = 0; i < _table.size(); i++){Node* cur = _table[i];while (cur){Node* next = cur->_next;size_t hashi = ht(cur->_kv.first) % newtable.size();cur->_next = newtable[hashi];newtable[hashi] = cur;cur = next;}_table[i] = nullptr;}_table.swap(newtable);}size_t hashi = ht(kv.first) % _table.size();Node* cur = new Node(kv);cur->_next = _table[hashi];_table[hashi] = cur;_n++;return true;}Node* Find(const K& key){HashFunc ht;size_t hashi = ht(key) % _table.size();Node* cur = _table[hashi];while (cur){Node* next = cur->_next;if (cur->_kv.first == key){return cur;}cur = next;}return nullptr;}bool erase(const K& key){HashFunc ht;size_t hashi = ht(key) % _table.size();Node* cur = _table[hashi];Node* prve = nullptr;while (cur){//头删//中间删if (ht(cur->_kv.first) == key){if (prve == nullptr){_table[hashi] = cur->_next;}else{prve->_next = cur->_next;}delete cur;return true;}prve = cur;cur = cur->_next;}return false;}void print(){for (size_t i = 0; i < _table.size(); i++){Node* cur = _table[i];printf("%zd->", i);while (cur){cout << cur->_kv.first << "->";cur = cur->_next;}cout << "Null" << endl;}}private:vector<Node*> _table;//创建一个数组,数组中的每一个成员都是节点size_t _n = 0;//记录有效个数};
}