当前位置: 首页 > news >正文

域名建议网站关键词全网搜索

域名建议网站,关键词全网搜索,王野天天,java老师pytorch求导的初步认识 requires_grad tensor(data, dtypeNone, deviceNone, requires_gradFalse)requires_grad是torch.tensor类的一个属性。如果设置为True,它会告诉PyTorch跟踪对该张量的操作,允许在反向传播期间计算梯度。 x.requires_grad 判…

pytorch求导的初步认识

requires_grad

tensor(data, dtype=None, device=None, requires_grad=False)

requires_grad是torch.tensor类的一个属性。如果设置为True,它会告诉PyTorch跟踪对该张量的操作,允许在反向传播期间计算梯度。

x.requires_grad    判断一个tensor是否可以求导,返回布尔值

叶子变量-leaf variable

  • 对于requires_grad=False 的张量,我们约定俗成地把它们归为叶子张量。
  • 对于requires_grad为True的张量,如果他们是由用户创建的,则它们是叶张量。

 如果某一个叶子变量,开始时不可导的,后面想设置它可导,该怎么办?

x.requires_grad_(True/False)   设置tensor的可导与不可导

注意:这种方法只适用于设置叶子变量,否则会出现如下错误

x = torch.tensor(2.0, requires_grad=True)
y = torch.pow(x, 2)
z = torch.add(y, 3)
z.backward()
print(x.grad)
print(y.grad)
tensor(4.)
None
  1. 创建一个浮点型张量x,其值为2.0,并设置requires_grad=True,使PyTorch可以跟踪x的计算历史并允许计算它的梯度。

  2. 创建一个新张量y,y是x的平方。

  3. 创建一个新张量z,z是y和3的和。

  4. 调用z.backward()进行反向传播,计算z关于x的梯度。

  5. 打印x的梯度,应该是2*x=4.0。

  6. 试图打印y的梯度。但是,PyTorch默认只计算并保留叶子节点的梯度非叶子节点的梯度在计算过程中会被释放掉,因此y的梯度应该为None。

保留中间变量的梯度

tensor.retain_grad()

 retain_grad()retain_graph是用来处理两个不同的情况

  1. retain_grad(): 用于保留非叶子节点的梯度。如果你想在反向传播结束后查看或使用非叶子节点的梯度,你应该在非叶子节点上调用.retain_grad()

  2. retain_graph: 当你调用.backward()时,PyTorch会自动清除计算图以释放内存。这意味着你不能在同一个计算图上多次调用.backward()。但是,如果你需要多次调用.backward()(例如在某些特定的优化算法中),你可以在调用.backward()时设置retain_graph=True保留计算图

.grad

通过tensor的grad属性查看所求得的梯度值。

.grad_fn

在PyTorch中,.grad_fn属性是一个引用到创建该Tensor的Function对象。也就是说,这个属性可以告诉你这个张量是如何生成的。对于由用户直接创建的张量,它的.grad_fnNone。对于由某个操作创建的张量,.grad_fn将引用到一个与这个操作相关的对象

import torchx = torch.tensor([1.0, 2.0], requires_grad=True)
y = x * 2
z = y.mean()print(x.grad_fn)
print(y.grad_fn)
print(z.grad_fn)

这里,x是由用户直接创建的,所以x.grad_fnNoney是通过乘法操作创建的,所以y.grad_fn是一个MulBackward0对象,这表明y是通过乘法操作创建的。z是通过求平均数操作创建的,所以z.grad_fn是一个MeanBackward0对象。

 pytorch自动求导实现神经网络

numpy手动实现

import numpy as np
import matplotlib.pyplot as pltN, D_in, H, D_out = 64, 1000, 100, 10  # 64个训练数据(只是一个batch),输入是1000维,hidden是100维,输出是10维'''随机创建一些训练数据'''
X = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)W1 = np.random.randn(D_in, H)  # 1000维转成100维
W2 = np.random.randn(H, D_out)  # 100维转成10维learning_rate = 1e-6all_loss = []epoch = 500for t in range(500):  # 做500次迭代'''前向传播(forward pass)'''h = X.dot(W1)  # N * Hh_relu = np.maximum(h, 0)  # 激活函数,N * Hy_hat = h_relu.dot(W2)  # N * D_out'''计算损失函数(compute loss)'''loss = np.square(y_hat - y).sum()  # 均方误差,忽略了÷Nprint("Epoch:{}   Loss:{}".format(t, loss))  # 打印每个迭代的损失all_loss.append(loss)'''后向传播(backward pass)'''# 计算梯度(此处没用torch,用最普通的链式求导,最终要得到 d{loss}/dX)grad_y_hat = 2.0 * (y_hat - y)  # d{loss}/d{y_hat},N * D_outgrad_W2 = h_relu.T.dot(grad_y_hat)  # 看前向传播中的第三个式子,d{loss}/d{W2},H * D_outgrad_h_relu = grad_y_hat.dot(W2.T)  # 看前向传播中的第三个式子,d{loss}/d{h_relu},N * Hgrad_h = grad_h_relu.copy()  # 这是h>0时的情况,d{h_relu}/d{h}=1grad_h[h < 0] = 0  # d{loss}/d{h}grad_W1 = X.T.dot(grad_h)  # 看前向传播中的第一个式子,d{loss}/d{W1}'''参数更新(update weights of W1 and W2)'''W1 -= learning_rate * grad_W1W2 -= learning_rate * grad_W2plt.plot(all_loss)
plt.xlabel("epoch")
plt.ylabel("Loss")
plt.show()

pytorch自动实现

import torchN, D_in, H, D_out = 64, 1000, 100, 10  # 64个训练数据(只是一个batch),输入是1000维,hidden是100维,输出是10维'''随机创建一些训练数据'''
X = torch.randn(N, D_in)
y = torch.randn(N, D_out)W1 = torch.randn(D_in, H, requires_grad=True)  # 1000维转成100维
W2 = torch.randn(H, D_out, requires_grad=True)  # 100维转成10维learning_rate = 1e-6for t in range(500):  # 做500次迭代'''前向传播(forward pass)'''y_hat = X.mm(W1).clamp(min=0).mm(W2)  # N * D_out'''计算损失函数(compute loss)'''loss = (y_hat - y).pow(2).sum()  # 均方误差,忽略了÷N,loss就是一个计算图(computation graph)print("Epoch:{}   Loss:{}".format(t, loss.item()))  # 打印每个迭代的损失'''后向传播(backward pass)'''loss.backward()'''参数更新(update weights of W1 and W2)'''with torch.no_grad():W1 -= learning_rate * W1.gradW2 -= learning_rate * W2.gradW1.grad.zero_()W2.grad.zero_()

pytorch手动实现

import torch
import matplotlib.pyplot as pltN, D_in, H, D_out = 64, 1000, 100, 10  # 64个训练数据(只是一个batch),输入是1000维,hidden是100维,输出是10维'''随机创建一些训练数据'''
X = torch.randn(N, D_in)
y = torch.randn(N, D_out)W1 = torch.randn(D_in, H)  # 1000维转成100维
W2 = torch.randn(H, D_out)  # 100维转成10维learning_rate = 1e-6all_loss = []for t in range(500):  # 做500次迭代'''前向传播(forward pass)'''h = X.mm(W1)  # N * Hh_relu = h.clamp(min=0)  # 激活函数,N * Hy_hat = h_relu.mm(W2)  # N * D_out'''计算损失函数(compute loss)'''loss = (y_hat - y).pow(2).sum().item()  # 均方误差,忽略了÷Nprint("Epoch:{}   Loss:{}".format(t, loss))  # 打印每个迭代的损失all_loss.append(loss)'''后向传播(backward pass)'''# 计算梯度(此处没用torch,用最普通的链式求导,最终要得到 d{loss}/dX)grad_y_hat = 2.0 * (y_hat - y)  # d{loss}/d{y_hat},N * D_outgrad_W2 = h_relu.t().mm(grad_y_hat)  # 看前向传播中的第三个式子,d{loss}/d{W2},H * D_outgrad_h_relu = grad_y_hat.mm(W2.t())  # 看前向传播中的第三个式子,d{loss}/d{h_relu},N * Hgrad_h = grad_h_relu.clone()  # 这是h>0时的情况,d{h_relu}/d{h}=1grad_h[h < 0] = 0  # d{loss}/d{h}grad_W1 = X.t().mm(grad_h)  # 看前向传播中的第一个式子,d{loss}/d{W1}'''参数更新(update weights of W1 and W2)'''W1 -= learning_rate * grad_W1W2 -= learning_rate * grad_W2plt.plot(all_loss)
plt.xlabel("epoch")
plt.ylabel("Loss")
plt.show()

torch.nn实现

import torch
import torch.nn as nn  # 各种定义 neural network 的方法N, D_in, H, D_out = 64, 1000, 100, 10  # 64个训练数据(只是一个batch),输入是1000维,hidden是100维,输出是10维'''随机创建一些训练数据'''
X = torch.randn(N, D_in)
y = torch.randn(N, D_out)model = torch.nn.Sequential(torch.nn.Linear(D_in, H, bias=True),  # W1 * X + b,默认Truetorch.nn.ReLU(),torch.nn.Linear(H, D_out)
)# model = model.cuda()  #这是使用GPU的情况loss_fn = nn.MSELoss(reduction='sum')learning_rate = 1e-4for t in range(500):  # 做500次迭代'''前向传播(forward pass)'''y_hat = model(X)  # model(X) = model.forward(X), N * D_out'''计算损失函数(compute loss)'''loss = loss_fn(y_hat, y)  # 均方误差,忽略了÷N,loss就是一个计算图(computation graph)print("Epoch:{}   Loss:{}".format(t, loss.item()))  # 打印每个迭代的损失'''后向传播(backward pass)'''loss.backward()'''参数更新(update weights of W1 and W2)'''with torch.no_grad():for param in model.parameters():param -= learning_rate * param.grad  # 模型中所有的参数更新model.zero_grad()

torch.nn的继承类

import torch
import torch.nn as nn  # 各种定义 neural network 的方法
from torchsummary import summary
# pip install torchsummary
N, D_in, H, D_out = 64, 1000, 100, 10  # 64个训练数据(只是一个batch),输入是1000维,hidden是100维,输出是10维'''随机创建一些训练数据'''
X = torch.randn(N, D_in)
y = torch.randn(N, D_out)'''定义两层网络'''class TwoLayerNet(torch.nn.Module):def __init__(self, D_in, H, D_out):super(TwoLayerNet, self).__init__()# 定义模型结构self.linear1 = torch.nn.Linear(D_in, H, bias=False)self.linear2 = torch.nn.Linear(H, D_out, bias=False)def forward(self, x):y_hat = self.linear2(self.linear1(X).clamp(min=0))return y_hatmodel = TwoLayerNet(D_in, H, D_out)loss_fn = nn.MSELoss(reduction='sum')
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)for t in range(500):  # 做500次迭代'''前向传播(forward pass)'''y_hat = model(X)  # model.forward(), N * D_out'''计算损失函数(compute loss)'''loss = loss_fn(y_hat, y)  # 均方误差,忽略了÷N,loss就是一个计算图(computation graph)print("Epoch:{}   Loss:{}".format(t, loss.item()))  # 打印每个迭代的损失optimizer.zero_grad()  # 求导之前把 gradient 清空'''后向传播(backward pass)'''loss.backward()'''参数更新(update weights of W1 and W2)'''optimizer.step()  # 一步把所有参数全更新print(summary(model, (64, 1000)))

http://www.hengruixuexiao.com/news/45851.html

相关文章:

  • 如何自己开一个网站网络营销师培训
  • 深圳最好的网站开发公司电话千锋教育学费多少
  • 北京网站seo策划百度搜索结果
  • 怎么做自己的发卡网站6商务软文写作
  • 网上做网页网站任务赚钱查淘宝关键词排名软件有哪些
  • wordpress 网站变慢优化大师优化项目有
  • 做网站职业咋样哪个平台可以免费打广告
  • 自己做网站兼职小程序开发公司
  • 能免费做网站网站及推广
  • 重庆网站建设找承越国际新闻最新消息今天 新闻
  • 佛山网站建设哪家好宣传推广方案怎么写
  • 网站备案注销申请书seo顾问是什么
  • 大连企业网站阿里云com域名注册
  • CP网站开发制作H5网络广告设计
  • 上海市门户网站seo排名培训
  • 网站建设收费标准新闻长沙网站seo报价
  • 开发网站公司收入热门网站排名
  • asp.net网站访问统计信息流广告有哪些投放平台
  • 用linux做网站关键词优化到首页怎么做到的
  • 前端开发做网站吗市场调研报告模板范文
  • 温州国资委网站建设seoul是什么品牌
  • 建筑人才网987中山网站seo优化
  • 百度推广自己做网站优化关键词规则
  • 京东当前网站做的营销活动北京网站建设专业公司
  • 网站设计学习机构手机怎么创建自己的网站平台
  • 购物网站 建设 费用广州优化营商环境条例
  • 十元精品店做网站小广告设计
  • 做国外房产的网站中国国家培训网靠谱吗
  • 四川城乡和建设厅网站抖音seo关键词优化
  • 设计网站技术seo关键词优化推广价格