当前位置: 首页 > news >正文

英文网站外链查询口碑营销的概念

英文网站外链查询,口碑营销的概念,做国际交友网站翻译,浙江海滨建设集团有限公司网站一、引言 在算法领域中,网格路径问题是一个经典的动态规划应用场景。这类问题通常涉及在一个二维网格中从起点到终点的路径规划,机器人每次只能向右或向下移动一步。本文将深入探讨两种典型的网格路径问题:基础无障碍版本和带障碍物版本&…

一、引言

在算法领域中,网格路径问题是一个经典的动态规划应用场景。这类问题通常涉及在一个二维网格中从起点到终点的路径规划,机器人每次只能向右或向下移动一步。本文将深入探讨两种典型的网格路径问题:基础无障碍版本和带障碍物版本,并详细分析它们的动态规划解法。

二、问题一:基础无障碍网格路径

2.1 问题描述:

一个机器人位于 M 行 N 列网格的左上角 (0,0),每次只能向右或向下移动一步。目标是到达网格右下角 (M-1,N-1),求所有可能的路径数量。

输入格式:一行,两个整数,分别表示网格的行数M和列数N(0<M,N≤100)
输出格式:一行,一个整数,表示从左上角走到右下角的不同的路径条数
输入样例:2 3
输出样例:3

2.2 动态规划解法:

我们使用二维数组 dp[i][j] 表示从起点 (0,0) 到达位置 (i,j) 的路径数量。

2.3 状态转移方程

dp[i][j] = dp[i-1][j] + dp[i][j-1]

2.4 边界条件

  • 第一行所有位置:只能从左边向右移动到达

  • 第一列所有位置:只能从上边向下移动到达

2.5 C++ 代码实现:

#include <iostream>
using namespace std;const int MAX_SIZE = 101;
int dp[MAX_SIZE][MAX_SIZE];int main() {int M, N;cin >> M >> N;// 初始化边界条件for (int i = 0; i < M; i++) dp[i][0] = 1;for (int j = 0; j < N; j++) dp[0][j] = 1;// 动态规划填表for (int i = 1; i < M; i++) {for (int j = 1; j < N; j++) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}cout << dp[M-1][N-1];return 0;
}

2.6 算法分析

  • 时间复杂度:O(M×N),需要填充整个网格

  • 空间复杂度:O(M×N),使用二维数组存储中间状态

  • 关键点:边界条件的处理是解决问题的基石

三、问题二:带障碍物的网格路径

3.1 问题描述

在基础问题基础上增加障碍物,机器人不能通过障碍物位置。给定障碍物坐标,计算从左上角到右下角的路径数量(无法到达时输出0)。

输入格式:
第一行:两个整数 M 和 N,表示网格的行数和列数

第二行:一个整数 K,表示障碍物的数量

接下来 K 行:每行两个整数 X 和 Y,表示障碍物的坐标(行和列均从0开始计数)

输出格式:
一个整数,表示路径数量(若无法到达,输出0)

输入样例:
5 6
5
1 1
1 3
3 2
3 4
4 3
输出样例:
5

3.2 动态规划解法改进

使用二维数组 dp[i][j] 表示到达 (i,j) 的路径数量,obstacle[i][j] 标记障碍物位置。

3.3 状态转移方程

如果 (i,j) 无障碍物:dp[i][j] = dp[i-1][j] + dp[i][j-1]
否则:dp[i][j] = 0

3.4 边界条件调整

  • 起点有障碍物:直接返回0

  • 第一行/列:一旦遇到障碍物,后续位置均不可达

3.5 C++ 代码实现

#include <iostream>
#include <vector>
using namespace std;const int MAX_SIZE = 101;
int dp[MAX_SIZE][MAX_SIZE];
bool obstacle[MAX_SIZE][MAX_SIZE] = {false};int main() {int M, N, K;cin >> M >> N >> K;// 标记障碍物for (int i = 0; i < K; i++) {int x, y;cin >> x >> y;obstacle[x][y] = true;}// 起点处理if (obstacle[0][0]) {cout << 0;return 0;}// 初始化边界dp[0][0] = 1;for (int i = 1; i < M; i++) dp[i][0] = obstacle[i][0] ? 0 : dp[i-1][0];for (int j = 1; j < N; j++) dp[0][j] = obstacle[0][j] ? 0 : dp[0][j-1];// 动态规划填表for (int i = 1; i < M; i++) {for (int j = 1; j < N; j++) {if (obstacle[i][j]) {dp[i][j] = 0;} else {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}}cout << dp[M-1][N-1];return 0;
}

3.6 算法分析

  • 时间复杂度:O(M×N),与基础版本相同

  • 空间复杂度:O(M×N),需要存储障碍物信息和状态数组

  • 关键改进

    1. 起点障碍物特殊处理

    2. 边界条件需要检查障碍物

    3. 动态规划时跳过障碍物位置

四、动态规划优化技巧

4.1 空间优化

可以使用滚动数组将空间复杂度优化为 O(N):

vector<int> dp(N, 0);
dp[0] = 1;
for (int i = 0; i < M; i++) {for (int j = 0; j < N; j++) {if (obstacle[i][j]) {dp[j] = 0;} else if (j > 0) {dp[j] += dp[j-1];}}
}
cout << dp[N-1];

4.2 常见变种问题

  1. 最小路径和:求路径上数字和的最小值

  2. 存在负权值:使用不同的动态规划策略

  3. 四方向移动:增加向上和向左移动能力

  4. 概率问题:计算成功到达的概率

http://www.hengruixuexiao.com/news/42857.html

相关文章:

  • 润商网站建设服务直通车推广计划方案
  • 网站开发外包平台惠州seo网络推广
  • 嘉兴网站建设哪家做得好爱站工具包
  • 梧州网站建设百度投放广告一天多少钱
  • 一流的上海网站建设公万网注册域名查询官方网站
  • 世界疫情最新数据地图杭州云优化信息技术有限公司
  • 4366网页游戏合肥seo公司
  • 做传单网站如何网站优化排名
  • 想学做网站需要学什么友情链接怎么交换
  • 电子商务网站建设设计题今日军事新闻视频
  • html用表格来做网站布局关键词优化包年推广
  • 宜昌网站设计百度提交入口网站网址
  • 做书的封面网站深圳网络推广引流
  • 沧州做网站的正规seo多少钱
  • 建设人才网站营销策划书范文案例
  • 网站优化方案和实施重庆百度推广电话
  • 两个域名指向同一个网站怎么做360优化关键词
  • 长沙app网页开发手机优化游戏性能的软件
  • 东旭网站建设搜索引擎优化中的步骤包括
  • 网站维护入口服装市场调研报告
  • 大连房地产网站开发免费网站在线客服软件
  • 外贸网站建设怎么选夫唯老师seo
  • 做公司网站的好处百度优化排名软件
  • html在线编程网站企业网络营销方案设计
  • 建设网上银行个人网上银行登录合肥网站优化平台
  • 网站免费在线观看网站建设报价单模板
  • 做导购网站 商品电子商务平台建设
  • 科技特长生有哪些科目网站建设seo
  • vue快速搭建网站沈阳专业seo关键词优化
  • 小视频解析网站怎么做福建优化seo