iis做网站跳转app开发公司推荐
目录
1. GCD
1.1 性质
1.2 代码实现
2. LCM
2.1 代码实现
3. 习题
3.1 等差数列
3.2 Hankson的趣味题
3.3 最大比例
3.4 GCD
1. GCD
整数a和b的最大公约数是能同时整除a和b的最大整数,记为gcd(a, b)
1.1 性质
GCD有关的题目一般会考核GCD的性质。
(1)gcd(a, b) = gcd(a, a+b) = gcd(a, k·a+b)
(2)gcd(ka, kb) = k·gcd(a, b)
(3)多个整数的最大公约数:gcd(a, b, c) = gcd(gcd(a, b), c)
(4)若gcd(a, b) = d,则gcd(a/d, b/d) = 1,即a/d与b/d互素
(5)gcd(a+cb, b) = gcd(a, b)
1.2 代码实现
import java.math.BigInteger;
public class Main {public static void main(String[] args) {System.out.println(gcd(45, 9)); // 9System.out.println(gcd(0, 42)); // 42System.out.println(gcd(42, 0)); // 42System.out.println(gcd(0, 0)); // 0System.out.println(gcd(20, 15)); // 5System.out.println(gcd(-20, 15)); // -5System.out.println(gcd(20, -15)); // 5System.out.println(gcd(-20, -15)); // -5System.out.println(gcd(new BigInteger("98938441343232"), new BigInteger("33422"))); // 2}public static long gcd(long a, long b) {if (b == 0) return a; return gcd(b, a % b);}public static BigInteger gcd(BigInteger a, BigInteger b) {return a.gcd(b);}
}
2. LCM
最小公倍数LCM(the Least Common Multiple)。a和b的最小公倍数lcm(a, b),从算术基本定理推理得到。
2.1 代码实现
public static int gcd(int a, int b) {if (b == 0) return a; return gcd(b, a % b);}public static long lcm(int a, int b) {return (long) a / gcd(a, b) * b;}
3. 习题
3.1 等差数列
import java.util.*;
public class Main {public static void main(String[] args) {Scanner scan = new Scanner(System.in);int num = scan.nextInt();int arr[] = new int[num];for(int i = 0;i<num;i++){arr[i] = scan.nextInt();}Arrays.sort(arr);int min = 0;for(int i = 1;i<num;i++){min = gcd(min,arr[i] - arr[i-1]);}if(min == 0) System.out.println(num);else System.out.println((arr[num-1] - arr[0])/min+1);scan.close();}public static int gcd(int a ,int b){if(b==0) return a;return gcd(b,a%b);}
}
这是gcd问题。把n个数据排序,计算它们的间隔,对所有间隔做GCD,结果为公差。最少数量等于:(最大值-最小值)/公差+1
3.2 Hankson的趣味题
import java.util.*;
public class Main {public static void main(String[] args) {Scanner scan = new Scanner(System.in);int n = scan.nextInt();for(int i = 0;i<n;i++){int a0 = scan.nextInt();int a1 = scan.nextInt();int b0 = scan.nextInt();int b1 = scan.nextInt();int count = 0;for(int x = 1;x<=Math.sqrt(b1);x++){if(b1%x == 0){if(gcd(x,a0) == a1 && lcm(x,b0) == b1){count++;} int y = b1 / x;if (x == y){continue; } if (gcd(y, a0) == a1 && lcm(y, b0) == b1){count++; }}}System.out.println(count);}scan.close();}public static int gcd(int a,int b){if(b==0) return a;return gcd(b,a%b);}public static int lcm(int a,int b){return a/gcd(a,b)*b;}
}
3.3 最大比例
import java.util.*;
public class Main {public static void main(String[] args) {Scanner scan = new Scanner(System.in);int num = scan.nextInt();long arr[] = new long[num];for(int i = 0;i<num;i++){arr[i] = scan.nextLong();}Arrays.sort(arr);long q = Long.MAX_VALUE;long t0 = 0;long t1 = 0;for(int i = 0;i<num-1;i++){if(arr[i+1]!=arr[i] && arr[i+1]/arr[i] < q){q = arr[i+1]/arr[i];t0 = arr[i];t1 = arr[i+1];}}long k = gcd(t0,t1);System.out.println(t1/k + "/" + t0/k);scan.close();}public static long gcd(long a,long b){if(b==0) return a;return gcd(b,a%b);}
}
3.4 GCD
import java.util.*;
public class Main {public static void main(String[] args) {Scanner scan = new Scanner(System.in);long a = scan.nextLong();long b = scan.nextLong();long c = Math.abs(a-b);System.out.println(c - a%c);scan.close();}
}
根据更相减损术可以知道一个等式:gcd(a,b)=gcd(a,b-a) 当然这里的前提是a<=b; 所以gcd(a+k,b+k)=gcd(a+k,b-a) 这里的a和b都是已知的 我们可以设c=b-a 即c是已知的 所以想要使得a+k与c的最大公因子尽可能地大 因为最大最大能到达c 显然这个式子的最大gcd一定为 c ,我们只需要计算出a 最少需要增加多少可以成为 c 的倍数,这个增量即是答案k