当前位置: 首页 > news >正文

怎么免费制作网站平台给我免费的视频在线观看

怎么免费制作网站平台,给我免费的视频在线观看,如何选择大连网站建设,民族团结 网站建设文章目录 一、前言二、堆的基本概念1. 堆的定义2. 堆的存储方式 三、堆的基本操作1. 插入操作(Insert)C 实现(大根堆) 2. 删除堆顶元素(Extract Max / Min)C 实现(大根堆) 3. 堆排序…

文章目录

    • 一、前言
    • 二、堆的基本概念
      • 1. 堆的定义
      • 2. 堆的存储方式
    • 三、堆的基本操作
      • 1. 插入操作(Insert)
        • C++ 实现(大根堆)
      • 2. 删除堆顶元素(Extract Max / Min)
        • C++ 实现(大根堆)
      • 3. 堆排序(Heap Sort)
        • C++ 实现
    • 五、堆的应用
      • 1. **优先队列**
      • 2. **求 Top K 问题**
      • 3. **Dijkstra 最短路径算法**
    • 六、总结


一、前言

在数据结构中,堆(Heap)是一种特殊的完全二叉树,通常用于实现优先队列(Priority Queue)。堆分为大根堆(Max Heap)小根堆(Min Heap),分别适用于不同的应用场景,例如堆排序求Top K问题Dijkstra最短路径算法等。

本文将介绍堆的概念、基本操作、应用以及C++和Python的代码实现。


二、堆的基本概念

1. 堆的定义

堆是一种完全二叉树,并且满足以下性质:

  • 大根堆(最大堆): 父节点的值总是大于等于子节点的值。
  • 小根堆(最小堆): 父节点的值总是小于等于子节点的值。

完全二叉树:如果树的每一层都被完全填满(除了可能的最后一层),并且最后一层的节点靠左对齐,则称其为完全二叉树。

2. 堆的存储方式

堆通常用数组存储,父子关系通过索引计算:

  • 父节点索引: parent(i) = (i - 1) / 2
  • 左子节点索引: left(i) = 2 * i + 1
  • 右子节点索引: right(i) = 2 * i + 2

三、堆的基本操作

1. 插入操作(Insert)

插入新元素的步骤:

  1. 将元素放入数组的末尾。
  2. 进行上浮(Heapify-Up)操作,调整堆结构。
C++ 实现(大根堆)
#include <iostream>
#include <vector>
using namespace std;class MaxHeap {
private:vector<int> heap;void heapifyUp(int index) {while (index > 0) {int parent = (index - 1) / 2;if (heap[parent] >= heap[index]) break;swap(heap[parent], heap[index]);index = parent;}}public:void insert(int value) {heap.push_back(value);heapifyUp(heap.size() - 1);}void printHeap() {for (int num : heap) cout << num << " ";cout << endl;}
};int main() {MaxHeap heap;heap.insert(10);heap.insert(20);heap.insert(5);heap.insert(30);heap.printHeap();return 0;
}

输出示例:

30 20 5 10

2. 删除堆顶元素(Extract Max / Min)

删除堆顶元素的步骤:

  1. 将堆顶元素与堆的最后一个元素交换,并移除最后一个元素。
  2. 进行下沉(Heapify-Down)操作,调整堆结构。
C++ 实现(大根堆)
void heapifyDown(int index) {int size = heap.size();while (true) {int left = 2 * index + 1;int right = 2 * index + 2;int largest = index;if (left < size && heap[left] > heap[largest]) largest = left;if (right < size && heap[right] > heap[largest]) largest = right;if (largest == index) break;swap(heap[index], heap[largest]);index = largest;}
}void removeMax() {if (heap.empty()) return;heap[0] = heap.back();heap.pop_back();heapifyDown(0);
}

3. 堆排序(Heap Sort)

堆排序的基本思想:

  1. 建堆(Heapify):将无序数组转换为堆结构。

  2. 排序

    • 交换堆顶元素与最后一个元素,并移除最后一个元素。
    • 重新调整堆结构(Heapify-Down)。
    • 重复此过程,直到所有元素有序。
C++ 实现
void heapSort(vector<int>& arr) {int n = arr.size();// 构建最大堆for (int i = n / 2 - 1; i >= 0; i--) {heapify(arr, n, i);}// 交换并调整堆for (int i = n - 1; i > 0; i--) {swap(arr[0], arr[i]);heapify(arr, i, 0);}
}

五、堆的应用

1. 优先队列

堆可以高效地实现优先队列,使得插入和取出最大(最小)值的时间复杂度为O(log N)

2. 求 Top K 问题

使用大小为 K 的最小堆,可以在 O(N log K) 的时间内求出前 K 大的元素。

import heapqdef topK(nums, k):return heapq.nlargest(k, nums)  # 取前 K 个最大元素print(topK([3, 1, 5, 12, 2, 11], 3))  # [12, 11, 5]

3. Dijkstra 最短路径算法

在图算法中,堆被用于优化最短路径算法,以高效找到当前最短路径的顶点。


六、总结

  1. 堆是完全二叉树,常用于实现优先队列。
  2. 堆的基本操作:插入(Heapify-Up)、删除(Heapify-Down)、堆排序。
  3. 堆的应用广泛,包括 Top K 问题、Dijkstra 算法等。

堆的高效性使其在数据流处理、搜索优化、任务调度等场景下广泛使用,是数据结构中非常重要的一部分。

http://www.hengruixuexiao.com/news/41309.html

相关文章:

  • 2015网站备案没下来百度seo优化技术
  • 网站形式的具体例子网络优化公司有哪些
  • 合肥网站优化服务网百度推广培训机构
  • 给帅哥做奴视频网站地址网络营销师证书
  • 品牌网站品牌理念老旧的后果全媒体运营师报名入口
  • 做网站服务器在哪买英语seo什么意思
  • 怎么注册网站免费的吗行业网络营销
  • 做外贸找产品上哪个网站好网络营销策划案怎么写
  • vs2012解决方案做网站长沙seo搜索
  • 做产品网站费用会员卡营销策划方案
  • 中国太空网站什么是搜索引擎优化推广
  • 网站套餐到期啥意思百度官方网站首页
  • 有域名了怎么做网站代运营竞价公司
  • 企业网站 手机网站 app 微网站哪里有做网络推广的
  • 经营性质的网站百度网页入口官网
  • 用php做视频网站有哪些新手怎么做电商运营
  • 有哪些网站可以做按摩广告语太原建站seo
  • 大足网站建设博客网站登录
  • 创意政府网站班级优化大师官方网站
  • 网站上的验证码怎么做的域名查询ip网站
  • 为什么建设网站很多公司没有购买一个网站域名需要多少钱
  • 邢台头条新闻最新seo网站诊断顾问
  • 周村网站建设竞价排名
  • 毕业网站设计搜索引擎营销的简称
  • 网站开发站点的文件夹双滦区seo整站排名
  • 太原本地网站搭建公司精准引流推广
  • 创建自己的博客网站百度搜索指数排行
  • 做网站电信运营许可证免费手机网页制作
  • 微信开发者工具app河北seo基础
  • 武汉云优化网站建设新浪体育最新消息