当前位置: 首页 > news >正文

做问卷用哪个网站制作网页的网站

做问卷用哪个网站,制作网页的网站,网站搭建免费,西部数码网站开发管理助手1. 深度Q网络(DQN)回顾 DQN通过神经网络近似状态-动作值函数(Q函数),在训练过程中使用经验回放(Experience Replay)和固定目标网络(Fixed Target Network)来稳定训练过程…

1. 深度Q网络(DQN)回顾

DQN通过神经网络近似状态-动作值函数(Q函数),在训练过程中使用经验回放(Experience Replay)和固定目标网络(Fixed Target Network)来稳定训练过程。DQN的更新公式为:

Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]

2. Double DQN算法

原理

DQN存在一个问题,即在更新Q值时,使用同一个Q网络选择和评估动作,容易导致过高估计(overestimation)问题。Double DQN(Double Deep Q-Network, DDQN)通过引入两个Q网络,分别用于选择动作和评估动作,来缓解这一问题。

公式推导

Double DQN的更新公式为:

Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma Q(s', \arg\max_{a'} Q(s', a'; \theta); \theta^- ) - Q(s, a)]

其中:

  • \theta 是当前Q网络的参数。
  • \theta^{-} 是目标Q网络的参数。
代码实现

我们以经典的OpenAI Gym中的CartPole环境为例,展示Double DQN算法的实现。

import gym
import numpy as np
import tensorflow as tf
from tensorflow.keras import models, layers, optimizersclass DoubleDQNAgent:def __init__(self, state_size, action_size):self.state_size = state_sizeself.action_size = action_sizeself.memory = []self.gamma = 0.95self.epsilon = 1.0self.epsilon_decay = 0.995self.epsilon_min = 0.01self.learning_rate = 0.001self.model = self._build_model()self.target_model = self._build_model()self.update_target_model()def _build_model(self):model = models.Sequential()model.add(layers.Dense(24, input_dim=self.state_size, activation='relu'))model.add(layers.Dense(24, activation='relu'))model.add(layers.Dense(self.action_size, activation='linear'))model.compile(loss='mse', optimizer=optimizers.Adam(learning_rate=self.learning_rate))return modeldef update_target_model(self):self.target_model.set_weights(self.model.get_weights())def remember(self, state, action, reward, next_state, done):self.memory.append((state, action, reward, next_state, done))def act(self, state):if np.random.rand() <= self.epsilon:return np.random.choice(self.action_size)q_values = self.model.predict(state)return np.argmax(q_values[0])def replay(self, batch_size):minibatch = np.random.choice(self.memory, batch_size)for state, action, reward, next_state, done in minibatch:target = self.model.predict(state)if done:target[0][action] = rewardelse:t = self.model.predict(next_state)t_ = self.target_model.predict(next_state)target[0][action] = reward + self.gamma * t_[0][np.argmax(t[0])]self.model.fit(state, target, epochs=1, verbose=0)if self.epsilon > self.epsilon_min:self.epsilon *= self.epsilon_decayenv = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DoubleDQNAgent(state_size, action_size)
episodes = 1000for e in range(episodes):state = env.reset()state = np.reshape(state, [1, state_size])done = Falsetime = 0while not done:action = agent.act(state)next_state, reward, done, _ = env.step(action)next_state = np.reshape(next_state, [1, state_size])reward = reward if not done else -10agent.remember(state, action, reward, next_state, done)state = next_statetime += 1if done:agent.update_target_model()print(f"Episode: {e}/{episodes}, Score: {time}, Epsilon: {agent.epsilon:.2}")if len(agent.memory) > 32:agent.replay(32)env.close()
print("Double DQN训练完成")

3. Dueling DQN算法

原理

Dueling DQN通过将Q值函数拆分为状态价值(Value)和优势函数(Advantage),分别估计某一状态下所有动作的价值和某一动作相对于其他动作的优势。这样可以更好地评估状态的价值,从而提高算法性能。

公式推导

Dueling DQN的Q值函数定义为:

Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + (A(s, a; \theta, \alpha) - \frac{1}{|\mathcal{A}|} \sum_{a'} A(s, a'; \theta, \alpha)) 

其中:

  • V(s; \theta, \beta)是状态价值函数。
  • A(s, a; \theta, \alpha)是优势函数。
代码实现

以CartPole环境为例,展示Dueling DQN算法的实现。

import gym
import numpy as np
import tensorflow as tf
from tensorflow.keras import models, layers, optimizersclass DuelingDQNAgent:def __init__(self, state_size, action_size):self.state_size = state_sizeself.action_size = action_sizeself.memory = []self.gamma = 0.95self.epsilon = 1.0self.epsilon_decay = 0.995self.epsilon_min = 0.01self.learning_rate = 0.001self.model = self._build_model()self.target_model = self._build_model()self.update_target_model()def _build_model(self):input = layers.Input(shape=(self.state_size,))dense1 = layers.Dense(24, activation='relu')(input)dense2 = layers.Dense(24, activation='relu')(dense1)value_fc = layers.Dense(24, activation='relu')(dense2)value = layers.Dense(1, activation='linear')(value_fc)advantage_fc = layers.Dense(24, activation='relu')(dense2)advantage = layers.Dense(self.action_size, activation='linear')(advantage_fc)q_values = layers.Lambda(lambda x: x[0] + (x[1] - tf.reduce_mean(x[1], axis=1, keepdims=True)))([value, advantage])model = models.Model(inputs=input, outputs=q_values)model.compile(loss='mse', optimizer=optimizers.Adam(learning_rate=self.learning_rate))return modeldef update_target_model(self):self.target_model.set_weights(self.model.get_weights())def remember(self, state, action, reward, next_state, done):self.memory.append((state, action, reward, next_state, done))def act(self, state):if np.random.rand() <= self.epsilon:return np.random.choice(self.action_size)q_values = self.model.predict(state)return np.argmax(q_values[0])def replay(self, batch_size):minibatch = np.random.choice(self.memory, batch_size)for state, action, reward, next_state, done in minibatch:target = self.model.predict(state)if done:target[0][action] = rewardelse:t = self.target_model.predict(next_state)target[0][action] = reward + self.gamma * np.amax(t[0])self.model.fit(state, target, epochs=1, verbose=0)if self.epsilon > self.epsilon_min:self.epsilon *= self.epsilon_decayenv = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DuelingDQNAgent(state_size, action_size)episodes = 1000for e in range(episodes):state = env.reset()state = np.reshape(state, [1, state_size])done = Falsetime = 0while not done:action = agent.act(state)next_state, reward, done, _ = env.step(action)next_state = np.reshape(next_state, [1, state_size])reward = reward if not done else -10agent.remember(state, action, reward, next_state, done)state = next_statetime += 1if done:agent.update_target_model()print(f"Episode: {e}/{episodes}, Score: {time}, Epsilon: {agent.epsilon:.2}")if len(agent.memory) > 32:agent.replay(32)env.close()
print("Dueling DQN训练完成")

4. 优先经验回放DQN(PER DQN)

原理

优先经验回放(Prioritized Experience Replay, PER)通过赋予不同经验样本不同的优先级来增强经验回放机制。优先级高的样本更有可能被再次抽取,从而加速学习过程。

公式推导

优先经验回放基于TD误差计算优先级,定义为:

p_i = | \delta_i | + \epsilon

其中:

  • \delta_i 是TD误差。
  • \epsilon 是一个小的正数,防止优先级为零。

然后根据优先级分布概率来采样,使用重要性采样权重来修正梯度更新,定义为:

w_i = \left( \frac{1}{N} \cdot \frac{1}{P(i)} \right)^\beta

代码实现

以CartPole环境为例,展示PER DQN算法的实现。

import gym
import numpy as np
import tensorflow as tf
from tensorflow.keras import models, layers, optimizers
import random
import collectionsclass PERDQNAgent:def __init__(self, state_size, action_size):self.state_size = state_sizeself.action_size = action_sizeself.memory = collections.deque(maxlen=2000)self.gamma = 0.95self.epsilon = 1.0self.epsilon_decay = 0.995self.epsilon_min = 0.01self.learning_rate = 0.001self.model = self._build_model()self.target_model = self._build_model()self.update_target_model()self.priority = []self.alpha = 0.6self.beta = 0.4self.beta_increment_per_sampling = 0.001def _build_model(self):model = models.Sequential()model.add(layers.Dense(24, input_dim=self.state_size, activation='relu'))model.add(layers.Dense(24, activation='relu'))model.add(layers.Dense(self.action_size, activation='linear'))model.compile(loss='mse', optimizer=optimizers.Adam(learning_rate=self.learning_rate))return modeldef update_target_model(self):self.target_model.set_weights(self.model.get_weights())def remember(self, state, action, reward, next_state, done):self.memory.append((state, action, reward, next_state, done))self.priority.append(max(self.priority, default=1))def act(self, state):if np.random.rand() <= self.epsilon:return np.random.choice(self.action_size)q_values = self.model.predict(state)return np.argmax(q_values[0])def replay(self, batch_size):if len(self.memory) < batch_size:returnpriorities = np.array(self.priority)sampling_probabilities = priorities ** self.alphasampling_probabilities /= sampling_probabilities.sum()indices = np.random.choice(len(self.memory), batch_size, p=sampling_probabilities)minibatch = [self.memory[i] for i in indices]importance_sampling_weights = (len(self.memory) * sampling_probabilities[indices]) ** (-self.beta)importance_sampling_weights /= importance_sampling_weights.max()for i, (state, action, reward, next_state, done) in enumerate(minibatch):target = self.model.predict(state)if done:target[0][action] = rewardelse:t = self.target_model.predict(next_state)target[0][action] = reward + self.gamma * np.amax(t[0])self.model.fit(state, target, epochs=1, verbose=0, sample_weight=importance_sampling_weights[i])self.priority[indices[i]] = abs(target[0][action] - self.model.predict(state)[0][action]) + 1e-6if self.epsilon > self.epsilon_min:self.epsilon *= self.epsilon_decayself.beta = min(1.0, self.beta + self.beta_increment_per_sampling)env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = PERDQNAgent(state_size, action_size)
episodes = 1000for e in range(episodes):state = env.reset()state = np.reshape(state, [1, state_size])done = Falsetime = 0while not done:action = agent.act(state)next_state, reward, done, _ = env.step(action)next_state = np.reshape(next_state, [1, state_size])reward = reward if not done else -10agent.remember(state, action, reward, next_state, done)state = next_statetime += 1if done:agent.update_target_model()print(f"Episode: {e}/{episodes}, Score: {time}, Epsilon: {agent.epsilon:.2}")if len(agent.memory) > 32:agent.replay(32)env.close()
print("PER DQN训练完成")

5. 总结

Double DQN、Dueling DQN和优先经验回放DQN(PER DQN)都是对原始DQN的改进,各有其优点和适用场景。Double DQN通过减少过高估计提高了算法的稳定性;Dueling DQN通过分离状态价值和优势函数更好地评估状态;PER DQN通过优先采样重要经验加速了学习过程。这些改进算法在不同的应用场景下,可以选择合适的算法来提升强化学习的效果。

http://www.hengruixuexiao.com/news/8971.html

相关文章:

  • 小型企业网站建设项目长春关键词优化报价
  • 成都初中abc分类seo外包 靠谱
  • 为赌博网站做宣传百度搜索平台
  • 怎么做网站流量app网络推广公司
  • 百度关键词网站怎么做网络营销公司名称
  • 做网站自己买服务器吗营销推广网
  • 做网站靠谱的公司如何建立一个自己的网站啊
  • 国家网站标题颜色搭配软文推广有哪些平台
  • 自己建一个网站需要多少钱?搜索引擎有哪些软件
  • 信息技术会考做网站哪里注册域名最便宜
  • 成都企业模板建站上海整站seo
  • 搭建b2c网站百度资源平台
  • 网站建设项目需求说明外贸推广平台
  • 营销型企业网站关键词挖掘网站
  • 北京电子商务网站建设交换友情链接
  • wordpress不能上传webpseo免费优化
  • 自助网站免费注册新能源汽车公司
  • 物联网软件开发外包刷移动关键词优化
  • 工程建设概念优化师助理
  • 用c 做网站关键词排名查询api
  • 深圳宝安网站建设报价百度推广怎么推广
  • 做的比较好的车载嗨曲网站大连seo按天付费
  • wordpress js链接seo服务
  • 自己做淘宝客是不是需要建网站百度ai人工智能
  • 做动漫网站需要服务器么网上怎么发布广告
  • 丽水做企业网站的公司软文网站大全
  • 网站开发毕业设计任务书网站优化方法
  • 安徽省人民政府优化教程
  • 用了wordpress的网站网站注册页面
  • 建设银行公积金查询网站首页热点新闻事件