当前位置: 首页 > news >正文

网投网站建设互联网推广

网投网站建设,互联网推广,政府网站建设进展情况,长沙好玩的地方景点推荐文章目录 从数学上证明1. 计算乘积 z 1 ⋅ z 2 z_1 \cdot z_2 z1​⋅z2​2. 应用三角恒等式3. 得出结果 从几何角度证明1.给出待乘的复数 u i u_i ui​2.给出任意复数 l l l3.复数 l l l 在不同坐标轴下的表示图 首先说结论: 在复平面中,两个复数&a…


首先说结论

在复平面中,两个复数(即向量)相乘时,满足模长相乘,角度相加的性质。

从数学上证明

假设两个复数 ( z 1 z_1 z1 ) 和 ( z 2 z_2 z2 ) 表示为:

z 1 = r 1 ( cos ⁡ θ 1 + i sin ⁡ θ 1 ) z_1 = r_1 (\cos \theta_1 + i \sin \theta_1) z1=r1(cosθ1+isinθ1)
z 2 = r 2 ( cos ⁡ θ 2 + i sin ⁡ θ 2 ) z_2 = r_2 (\cos \theta_2 + i \sin \theta_2) z2=r2(cosθ2+isinθ2)

其中:

  • ( r 1 = ∣ z 1 ∣ r_1 = |z_1| r1=z1 ) 和 ( r 2 = ∣ z 2 ∣ r_2 = |z_2| r2=z2 ) 分别是 ( z 1 z_1 z1 ) 和 ( z 2 z_2 z2 ) 的模长,
  • ( θ 1 \theta_1 θ1 ) 和 ( θ 2 \theta_2 θ2 ) 分别是 ( z 1 z_1 z1 ) 和 ( z 2 z_2 z2 ) 的辐角(即相对于实轴的角度)。

1. 计算乘积 z 1 ⋅ z 2 z_1 \cdot z_2 z1z2

我们将 ( z 1 z_1 z1 ) 和 ( z 2 z_2 z2 ) 相乘,得到:

z 1 ⋅ z 2 = r 1 ( cos ⁡ θ 1 + i sin ⁡ θ 1 ) ⋅ r 2 ( cos ⁡ θ 2 + i sin ⁡ θ 2 ) z_1 \cdot z_2 = r_1 (\cos \theta_1 + i \sin \theta_1) \cdot r_2 (\cos \theta_2 + i \sin \theta_2) z1z2=r1(cosθ1+isinθ1)r2(cosθ2+isinθ2)

使用分配律展开:

z 1 ⋅ z 2 = r 1 r 2 [ ( cos ⁡ θ 1 cos ⁡ θ 2 − sin ⁡ θ 1 sin ⁡ θ 2 ) + i ( cos ⁡ θ 1 sin ⁡ θ 2 + sin ⁡ θ 1 cos ⁡ θ 2 ) ] z_1 \cdot z_2 = r_1 r_2 \left[ (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i (\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2) \right] z1z2=r1r2[(cosθ1cosθ2sinθ1sinθ2)+i(cosθ1sinθ2+sinθ1cosθ2)]

2. 应用三角恒等式

根据加法公式的三角恒等式,有:

cos ⁡ ( θ 1 + θ 2 ) = cos ⁡ θ 1 cos ⁡ θ 2 − sin ⁡ θ 1 sin ⁡ θ 2 \cos(\theta_1 + \theta_2) = \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 cos(θ1+θ2)=cosθ1cosθ2sinθ1sinθ2

sin ⁡ ( θ 1 + θ 2 ) = cos ⁡ θ 1 sin ⁡ θ 2 + sin ⁡ θ 1 cos ⁡ θ 2 \sin(\theta_1 + \theta_2) = \cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2 sin(θ1+θ2)=cosθ1sinθ2+sinθ1cosθ2

将这些恒等式代入到上面的表达式中,我们得到:

z 1 ⋅ z 2 = r 1 r 2 ( cos ⁡ ( θ 1 + θ 2 ) + i sin ⁡ ( θ 1 + θ 2 ) ) z_1 \cdot z_2 = r_1 r_2 \left( \cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right) z1z2=r1r2(cos(θ1+θ2)+isin(θ1+θ2))

3. 得出结果

根据复数的极坐标形式,这个结果可以写成:

z 1 ⋅ z 2 = r 1 r 2 ⋅ e i ( θ 1 + θ 2 ) z_1 \cdot z_2 = r_1 r_2 \cdot e^{i (\theta_1 + \theta_2)} z1z2=r1r2ei(θ1+θ2)
因此,我们得出结论:两个复数相乘时,其模长是各自模长的乘积,辐角是各自辐角的和,即满足“模长相乘,角度相加”的性质。

从几何角度证明

本质上就是坐标轴的变换

1.给出待乘的复数 u i u_i ui

{ u = a + b i u i = − b + a i \left\{\begin{array}{l} u=a+b i \\ u i=-b+a i \end{array}\right. {u=a+biui=b+ai

( a , b ) ⋅ ( − b , a ) = 0 (a,b)\cdot(-b,a)=0 (a,b)(b,a)=0由于内积为0,故u与ui正交

2.给出任意复数 l l l

所以 ∀ l = x + y i \forall l=x+y_{i} l=x+yi与u相乘可以在新的坐标轴u、ui下表示,其与坐标轴角度与在原先坐标轴下相同。
所以两个复数(即向量)相乘时,满足角度相加的性质。
{ ∀ l = x + y i l ⋅ u = ( x + y i ) ⋅ u = x u + y u i \left\{\begin{array}{l} \forall l=x+y_{i} \\ l \cdot u=\left(x+y_{i}\right) \cdot u=x u+y u i \end{array}\right. {l=x+yilu=(x+yi)u=xu+yui

3.复数 l l l 在不同坐标轴下的表示图

Image 1Image 2
http://www.hengruixuexiao.com/news/8380.html

相关文章:

  • 买奢侈品代工厂做的产品的网站名百度的seo关键词优化怎么弄
  • 6网站免费建站搭建网站步骤
  • app推广团队seo推广软件代理
  • 做国际贸易都用什么网站代写文案平台
  • 山东高端网站建设漳州seo建站
  • 重庆网站制作技术在线看seo网站
  • 做网站需要哪些框架网络推广怎么做
  • 温州大型网站建设说到很多seo人员都转行了
  • 预付的网站开发费用怎么入账产品推广建议
  • 向客户介绍网站建设的话本北京seo培训机构
  • 什么网站资源多怎么优化网络
  • 怎么自己做歌曲网站网站的优化从哪里进行
  • 哪有做网站的百度推广怎么赚钱
  • 简述网站开发设计流程图个人发布信息免费推广平台
  • 手机做任务网站有哪些内容淘宝运营团队怎么找
  • 河南 网站建设sem竞价托管
  • 付费 视频 网站 怎么做软文写作发布
  • 可以做游戏可以视频约会的网站网站推广的方法有哪些?
  • 个人建网站一般多少钱电脑优化用什么软件好
  • 江门企业做网站域名注册平台
  • 做软装设计找图有什么好的网站aso搜索排名优化
  • 象客企业网站做优化排名如何快速推广网站
  • 网站建设业务员前景外链下载
  • 政务门户网站建设方案品牌推广文案
  • 产品推广网站模板怎么制作一个网页
  • 烟台南山集团网站建设wordpress外贸独立站
  • 旅游网站设计的优点公司网页怎么制作
  • 广州知名设计公司排名网站seo报价
  • 企业网站的网络营销微信社群营销怎么做
  • aspnet新闻网站开发搜索引擎优化技术都有哪些