当前位置: 首页 > news >正文

seo站长助手惠州seo网站管理

seo站长助手,惠州seo网站管理,免费的ppt模板网,怎么用织梦做网站前台交易中的胜率和盈亏比估算 1.定义 胜率是指交易者在一定时间内成功交易的次数占总交易次数的比例。例如,如果交易者在10次交易中成功了6次,那么他的胜率就是60%。 盈亏比是指交易者每笔成功交易的盈利与每笔失败交易的亏损之间的比例。例如&#xff0…

交易中的胜率和盈亏比估算

1.定义

胜率是指交易者在一定时间内成功交易的次数占总交易次数的比例。例如,如果交易者在10次交易中成功了6次,那么他的胜率就是60%。

盈亏比是指交易者每笔成功交易的盈利与每笔失败交易的亏损之间的比例。例如,如果交易者每笔成功交易盈利100元,而每笔失败交易亏损50元,那么他的盈亏比就是2:1。

2.计算逻辑

假设一个交易者在100次交易中的胜率为60%,盈亏比为2:1。模拟计算他的总盈利情况:

(1)确定交易者在100次交易中的成功次数和失败次数。根据胜率60%,成功次数为60次,失败次数为40次。
(2)计算每次成功交易和失败交易的盈亏情况。根据盈亏比2:1,每次成功交易盈利2单位,每次失败交易亏损1单位。
(3)将成功交易的盈利和失败交易的亏损相加,得到总盈利情况。即:60次成功交易×2单位盈利 - 40次失败交易×1单位亏损 = 120单位盈利 - 40单位亏损 = 80单位总盈利 。

3.简单模拟计算

实际交易中,胜率设为55%,盈亏比设为4:3,比较合理的范围。

代码:

import numpy as np  
import pandas as pd  
import random#定义维度,交易数量
v_size = 1000  
# 定义概率分布 ,设置胜率 
probabilities = [0.45, 0.55]  
# 定义盈亏比 4:3 
v_win = 400.0
v_loss = -300.0# 生成随机数组  
arr_probability = np.random.choice([0,1], size=v_size, p=probabilities, replace=True)  # 将随机数组转换为pandas Series  
series_probability = pd.Series(arr_probability)  df_profit = pd.DataFrame()
df_profit['probability'] = series_probability# 使用numpy生成一个长度为v_size的数组,全部填充0.0,然后转换为Series  
series = pd.Series(np.zeros(v_size))  
# 增加profit 列  
df_profit['profit'] = seriesi = 0 
# df遍历赋值,如果是1,盈利赋值,如果是0, 亏损赋值。
for index, row in df_profit.iterrows():  if  row['probability'] == 1 :df_profit.loc[i,'profit'] = random.uniform(0.0, v_win)  else :df_profit.loc[i,'profit'] = random.uniform(v_loss, 0.0)  i += 1print('Profit: ',round(df_profit['profit'].sum(),2))
print('Win times: ',df_profit['probability'].sum())
print('Test times:',len(df_profit))

执行结果:

Profit:  51270.84
Win times:  583
Test times: 1000

交易次数:1000
盈利 51270.84 。
胜率是:58.3% 。
还是比较可观的。
当然,随着交易的次数增加,胜率会更接近55% 。

交易次数 :100000 。

Profit:  4283618.09
Win times:  55098
Test times: 100000

可以看到,胜率55.098% 。

4.模拟交易

上面的数据不容易看出投资本金,利润之间的关系。
将改进程序,更接近模拟交易过程,看看胜率和盈亏比对最终利润的影响。

import numpy as np  
import pandas as pd  
import random#定义维度,交易数量
v_size = 100  
# 定义概率分布 ,设置胜率 
probabilities = [0.45, 0.55]  
# 定义盈亏比 4:3 
v_win = 400.0
v_loss = -300.0# 初始资金
init_cash = 10000.0# 手续费 万二
v_comm = 0.0002# 当前现金 ,每次交易的仓位 
position = 0.6# 生成随机数组  
arr_probability = np.random.choice([0,1], size=v_size, p=probabilities, replace=True)  # 将随机数组转换为pandas Series  
series_probability = pd.Series(arr_probability)  df_profit = pd.DataFrame()
df_profit['probability'] = series_probability# 使用numpy生成一个长度为v_size的数组,全部填充0.0,然后转换为Series  
series = pd.Series(np.zeros(v_size))  # 每次交易的利润,含参与交易的本金
df_profit['profit'] = series# 每次交易的初始资金
df_profit['cash'] = series# 每次的仓位值
df_profit['position'] = series# 每次交易的佣金
df_profit['comm'] = seriesi = 0 # df遍历赋值,如果是1,盈利赋值,如果是0, 亏损赋值。
for index, row in df_profit.iterrows():  if  row['probability'] == 1 :# 如果是首次交易if i == 0 :df_profit.loc[i,'cash'] = init_cashdf_profit.loc[i,'position'] = init_cash * positiondf_profit.loc[i,'profit'] = random.uniform(0.0, v_win) / 10000 * df_profit.loc[i,'position'] + df_profit.loc[i,'position'] # 盈利 df_profit.loc[i,'comm'] = abs(df_profit.loc[i,'profit']) * v_comm # 总是正值df_profit.loc[i,'profit'] = df_profit.loc[i,'profit'] - df_profit.loc[i,'comm']#非首次交易else :df_profit.loc[i,'cash'] = df_profit.loc[i-1,'cash'] - df_profit.loc[i-1,'position'] + df_profit.loc[i-1,'profit']df_profit.loc[i,'position'] = df_profit.loc[i,'cash'] * positiondf_profit.loc[i,'profit'] = random.uniform(0.0, v_win) / 10000 * df_profit.loc[i,'position'] + df_profit.loc[i,'position'] # 盈利 df_profit.loc[i,'comm'] = abs(df_profit.loc[i,'profit']) * v_comm # 总是正值df_profit.loc[i,'profit'] = df_profit.loc[i,'profit'] - df_profit.loc[i,'comm']else :# 如果是首次交易if i == 0 :df_profit.loc[i,'cash'] = init_cashdf_profit.loc[i,'position'] = init_cash * positiondf_profit.loc[i,'profit'] = random.uniform(v_loss, 0.0) / 10000 * df_profit.loc[i,'position'] + df_profit.loc[i,'position'] # 亏损df_profit.loc[i,'comm'] = abs(df_profit.loc[i,'profit']) * v_comm # 总是正值df_profit.loc[i,'profit'] = df_profit.loc[i,'profit'] - df_profit.loc[i,'comm']#非首次交易    else :df_profit.loc[i,'cash'] = df_profit.loc[i-1,'cash'] - df_profit.loc[i-1,'position'] + df_profit.loc[i-1,'profit']df_profit.loc[i,'position'] = df_profit.loc[i,'cash'] * positiondf_profit.loc[i,'profit'] = random.uniform(v_loss, 0.0) / 10000 * df_profit.loc[i,'position'] + df_profit.loc[i,'position'] # 亏损df_profit.loc[i,'comm'] = abs(df_profit.loc[i,'profit']) * v_comm # 总是正值df_profit.loc[i,'profit'] = df_profit.loc[i,'profit'] - df_profit.loc[i,'comm']i += 1#print('Profit: ',round(df_profit['profit'].sum(),2))
print('Win times: ',df_profit['probability'].sum())
print('Test times: ',len(df_profit))
print('Profit ratio %: ',round((df_profit.loc[v_size -1,'cash']/init_cash - 1)*100,2))
print('Last trade cash: ',round(df_profit.loc[v_size-1,'cash'],2))
print('Sum trade comm: ',round(df_profit['comm'].sum(),2))                                        
# df_profit

结果:

Win times:  48
Test times:  100
Profit ratio %:  7.52
Last trade cash:  10752.08
Sum trade comm:  120.04

如果把交易次数设置1000

Win times:  550
Test times:  1000
Profit ratio %:  965.35
Last trade cash:  106534.91
Sum trade comm:  3919.97
http://www.hengruixuexiao.com/news/7213.html

相关文章:

  • 网站制作新技术拉新推广渠道
  • 复制手机网站模板线上推广有哪些
  • 安丘网站建设制作百度app官方下载安装
  • 巫山那家做网站建立网站有哪些步骤
  • 国内做受网站电商还有发展前景吗
  • wordpress基础seo服务外包报价
  • 深圳高端网站开发百度推广客户端手机版
  • 门户网站建设投标书宁波seo优化报价多少
  • 漯河市疾控中心最新消息seo软件推荐
  • 网站程序定制开发流程郑州seo外包v1
  • 绍兴企业做网站搜索指数的数据来源是什么
  • 滨州网站建设sdshiya百度关键词购买
  • 网站开发系统论文搜索优化的培训免费咨询
  • 南京做网站具体需要多少钱手机百度app安装下载
  • 上地网站建设代写
  • 南宁东凯做网站的公司我国网络营销现状分析
  • 郑州做响应式网站百度知道提问
  • wordpress付费注册插件自然搜索优化
  • 英德建设网站谷歌推广怎么开户
  • 17一起做网站app百度seo快速排名优化
  • 滨海新区做网站电话最近七天的新闻重点
  • WordPress微信SVG图标合肥seo代理商
  • 台州公司网站建设自己创建一个网站需要多少钱
  • 网站里面的链接怎么做的aso优化的主要内容
  • 盗取dede系统做的网站模板做网页多少钱一个页面
  • 个人优秀网站新闻平台发布
  • 兰州手机网站制作公司病毒什么时候才能消失
  • 旅行社网站 模板网络营销策划案怎么写
  • 长沙哪里优化网站seo推广小分享
  • 搭建asp虚拟主机网站北京网站排名seo