当前位置: 首页 > news >正文

湖南定制响应式网站有哪些云盘网页版登录

湖南定制响应式网站有哪些,云盘网页版登录,email信箱注册网站,我们的优势的网站对AI炒股感兴趣的小伙伴可加WX:caihaihua057200(备注:学校/公司名字方向) 另外我还有些AI的应用可以一起研究(我一直开源代码) 1、引言 在这期内容中,我们回到AI预测股票,转而探索…

 对AI炒股感兴趣的小伙伴可加WX:caihaihua057200(备注:学校/公司+名字+方向)

另外我还有些AI的应用可以一起研究(我一直开源代码)

1、引言

在这期内容中,我们回到AI预测股票,转而探索人工智能技术如何应用于另一个有趣的领域:预测A股大盘。

2、AI与股票的关系

在股票预测中,AI充当着数据分析和模式识别的角色。虽然无法确保百分之百准确的结果,但它为增加预测的洞察力和理解提供了全新的途径。

3、数据收集与处理(akshare爬实时上证指数)

import akshare as ak
import numpy as np
import pandas as pd
from pandas.tseries.offsets import CustomBusinessDay
from datetime import datetime
import xgboost as xgbdf = ak.stock_zh_index_daily_em(symbol='sh000001')  

数据预处理:时间特征转换及时间特征结合K线特征


today = datetime.today()
date_str = today.strftime("%Y%m%d")
base = int(datetime.strptime(date_str, "%Y%m%d").timestamp())
change1 = lambda x: (int(datetime.strptime(x, "%Y%m%d").timestamp()) - base) / 86400
change2 = lambda x: (datetime.strptime(str(x), "%Y%m%d")).day
change3 = lambda x: datetime.strptime(str(x), "%Y%m%d").weekday()df['date'] = df['date'].str.replace('-', '')
X = df['date'].apply(lambda x: change1(x)).values.reshape(-1, 1)
X_month_day = df['date'].apply(lambda x: change2(x)).values.reshape(-1, 1)
X_week_day = df['date'].apply(lambda x: change3(x)).values.reshape(-1, 1)
XX = np.concatenate((X, X_week_day, X_month_day), axis=1)[29:]
FT = np.array(df.drop(columns=['date']))
min_vals = np.min(FT, axis=0)
max_vals = np.max(FT, axis=0)
FT = (FT - min_vals) / (max_vals - min_vals)window_size = 30
num_rows, num_columns = FT.shape
new_num_rows = num_rows - window_size + 1
result1 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.mean(window, axis=0)result1[i] = window_meanresult2 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.max(window, axis=0)result2[i] = window_meanresult3 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.min(window, axis=0)result3[i] = window_meanresult4 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.std(window, axis=0)result4[i] = window_mean
result_list = [result1, result2, result3, result4]
result = np.hstack(result_list)XX = np.concatenate((XX, result), axis=1)

4、预测模型(XGboots)


y1 = df['open'][29:]
y2 = df['close'][29:]
y3 = df['high'][29:]
y4 = df['low'][29:]
models1 = xgb.XGBRegressor()
models2 = xgb.XGBRegressor()
models3 = xgb.XGBRegressor()
models4 = xgb.XGBRegressor()
models1.fit(XX, y1)
models2.fit(XX, y2)
models3.fit(XX, y3)
models4.fit(XX, y4)

5、应用及画图


start_date = pd.to_datetime(today)bday_cn = CustomBusinessDay(weekmask='Mon Tue Wed Thu Fri')
future_dates = pd.date_range(start=start_date, periods=6, freq=bday_cn)
future_dates_str = [date.strftime('%Y-%m-%d') for date in future_dates][1:]
future_dates_str = pd.Series(future_dates_str).str.replace('-', '')
X_x = future_dates_str.apply(lambda x: change1(x)).values.reshape(-1, 1)
X_month_day_x = future_dates_str.apply(lambda x: change2(x)).values.reshape(-1, 1)
X_week_day_x = future_dates_str.apply(lambda x: change3(x)).values.reshape(-1, 1)
XXX = np.concatenate((X_x, X_week_day_x, X_month_day_x), axis=1)
last_column = result[-1:, ]
repeated_last_column = np.tile(last_column, (5, 1))
result = repeated_last_columnXXX = np.concatenate((XXX, result), axis=1)
pred1 = models1.predict(XXX)
pred2 = models2.predict(XXX)
pred3 = models3.predict(XXX)
pred4 = models4.predict(XXX)y1 = np.array(df['open'][-30:])
y2 = np.array(df['close'][-30:])
y3 = np.array(df['high'][-30:])
y4 = np.array(df['low'][-30:])
YD = np.array(df['date'][-30:])data = {'open': np.concatenate([y1, pred1]),'close': np.concatenate([y2, pred2]),'high': np.concatenate([y3, pred3]),'low': np.concatenate([y4, pred4]),'date':np.concatenate([YD,np.array(future_dates_str)])
}df = pd.DataFrame(data)import mplfinance as mpf# df['date'] = pd.date_range(start=RQ, periods=len(df))
df['date'] = pd.to_datetime(df['date'])
df.set_index('date', inplace=True)
# mpf.plot(df, type='candle', title='Stock K-Line')
my_color = mpf.make_marketcolors(up='red',  # 上涨时为红色down='green',  # 下跌时为绿色# edge='i',  # 隐藏k线边缘# volume='in',  # 成交量用同样的颜色inherit=True)my_style = mpf.make_mpf_style(# gridaxis='both',  # 设置网格# gridstyle='-.',# y_on_right=True,marketcolors=my_color)mpf.plot(df, type='candle',style=my_style,# datetime_format='%Y年%m月%d日',title='Stock K-Line')

6、结果(预测下周上证:图中后五天是预测结果)

 总结图中所示:

1、周一到周三略微上涨一点点。

2、下周四五高开高走(令人惊讶)。

如果提前布局的话应该是选择在周四找最低点买入。

全代码,一件运行:

import akshare as ak
import numpy as np
import pandas as pd
from pandas.tseries.offsets import CustomBusinessDay
from datetime import datetime
import xgboost as xgbdf = ak.stock_zh_index_daily_em(symbol='sh000001')today = datetime.today()
date_str = today.strftime("%Y%m%d")
base = int(datetime.strptime(date_str, "%Y%m%d").timestamp())
change1 = lambda x: (int(datetime.strptime(x, "%Y%m%d").timestamp()) - base) / 86400
change2 = lambda x: (datetime.strptime(str(x), "%Y%m%d")).day
change3 = lambda x: datetime.strptime(str(x), "%Y%m%d").weekday()df['date'] = df['date'].str.replace('-', '')
X = df['date'].apply(lambda x: change1(x)).values.reshape(-1, 1)
X_month_day = df['date'].apply(lambda x: change2(x)).values.reshape(-1, 1)
X_week_day = df['date'].apply(lambda x: change3(x)).values.reshape(-1, 1)
XX = np.concatenate((X, X_week_day, X_month_day), axis=1)[29:]
FT = np.array(df.drop(columns=['date']))
min_vals = np.min(FT, axis=0)
max_vals = np.max(FT, axis=0)
FT = (FT - min_vals) / (max_vals - min_vals)window_size = 30
num_rows, num_columns = FT.shape
new_num_rows = num_rows - window_size + 1
result1 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.mean(window, axis=0)result1[i] = window_meanresult2 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.max(window, axis=0)result2[i] = window_meanresult3 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.min(window, axis=0)result3[i] = window_meanresult4 = np.empty((new_num_rows, num_columns))
for i in range(new_num_rows):window = FT[i: i + window_size]window_mean = np.std(window, axis=0)result4[i] = window_mean
result_list = [result1, result2, result3, result4]
result = np.hstack(result_list)XX = np.concatenate((XX, result), axis=1)y1 = df['open'][29:]
y2 = df['close'][29:]
y3 = df['high'][29:]
y4 = df['low'][29:]
models1 = xgb.XGBRegressor()
models2 = xgb.XGBRegressor()
models3 = xgb.XGBRegressor()
models4 = xgb.XGBRegressor()
models1.fit(XX, y1)
models2.fit(XX, y2)
models3.fit(XX, y3)
models4.fit(XX, y4)start_date = pd.to_datetime(today)bday_cn = CustomBusinessDay(weekmask='Mon Tue Wed Thu Fri')
future_dates = pd.date_range(start=start_date, periods=6, freq=bday_cn)
future_dates_str = [date.strftime('%Y-%m-%d') for date in future_dates][1:]
future_dates_str = pd.Series(future_dates_str).str.replace('-', '')
X_x = future_dates_str.apply(lambda x: change1(x)).values.reshape(-1, 1)
X_month_day_x = future_dates_str.apply(lambda x: change2(x)).values.reshape(-1, 1)
X_week_day_x = future_dates_str.apply(lambda x: change3(x)).values.reshape(-1, 1)
XXX = np.concatenate((X_x, X_week_day_x, X_month_day_x), axis=1)
last_column = result[-1:, ]
repeated_last_column = np.tile(last_column, (5, 1))
result = repeated_last_columnXXX = np.concatenate((XXX, result), axis=1)
pred1 = models1.predict(XXX)
pred2 = models2.predict(XXX)
pred3 = models3.predict(XXX)
pred4 = models4.predict(XXX)y1 = np.array(df['open'][-30:])
y2 = np.array(df['close'][-30:])
y3 = np.array(df['high'][-30:])
y4 = np.array(df['low'][-30:])
YD = np.array(df['date'][-30:])data = {'open': np.concatenate([y1, pred1]),'close': np.concatenate([y2, pred2]),'high': np.concatenate([y3, pred3]),'low': np.concatenate([y4, pred4]),'date':np.concatenate([YD,np.array(future_dates_str)])
}df = pd.DataFrame(data)import mplfinance as mpf# df['date'] = pd.date_range(start=RQ, periods=len(df))
df['date'] = pd.to_datetime(df['date'])
df.set_index('date', inplace=True)
# mpf.plot(df, type='candle', title='Stock K-Line')
my_color = mpf.make_marketcolors(up='red',  # 上涨时为红色down='green',  # 下跌时为绿色# edge='i',  # 隐藏k线边缘# volume='in',  # 成交量用同样的颜色inherit=True)my_style = mpf.make_mpf_style(# gridaxis='both',  # 设置网格# gridstyle='-.',# y_on_right=True,marketcolors=my_color)mpf.plot(df, type='candle',style=my_style,# datetime_format='%Y年%m月%d日',title='Stock K-Line')

http://www.hengruixuexiao.com/news/52072.html

相关文章:

  • 信誉好的营销单页网站seo实战指导
  • 外贸网站建设价格怎么样seo营销是什么
  • directadmin网站储存目录福州百度代理
  • 做游戏脚本的网站成人零基础学电脑培训班
  • 餐饮网站 设计电子商务是干什么的
  • 活动策划网站青岛网站建设培训学校
  • 2018做网站的软件百度学术论文官网入口
  • 做个网站找别人做的吗seo效果检测步骤
  • 个人作品网站策划书如何建立一个自己的网站?
  • 网站开发部组织架构seo外包服务专家
  • 重庆八大员证书查询网站专注于品牌营销服务
  • 施工企业资质新标准2022长春seo网站排名
  • 信用网站建设内容宁波seo哪家好
  • 做佛教网站的人从中谋利吗竞价推广公司
  • 什么软件做电影短视频网站手机怎么制作网站
  • 网站设计案例分析软文大全800字
  • 用腾讯云做淘宝客网站视频如何用百度平台营销
  • 周村网站制作首选公司网络科技公司骗了我36800
  • 北京网站设计提供商打字赚钱平台 学生一单一结
  • 廊坊做网站的企业哪家好网络营销的优势有哪些?
  • 做医疗器械网站怎么找高清大图舆情分析报告模板
  • 河津做网站seo标题优化是什么意思
  • 安徽省驻房城乡建设官方网站app推广营销
  • 免费制作微信网页网站广东知名seo推广多少钱
  • 小说网站分页关键字怎么做seo
  • 网站中qq跳转怎么做的无锡seo优化
  • 房屋装修效果图用什么软件seo企业顾问
  • 做网站一单能挣多少seo中文意思是
  • 凡科2网站需要备案吗企业管理咨询
  • 廊坊做网站价格怎么网络推广自己业务