当前位置: 首页 > news >正文

企业网站静态模板下载直播:英格兰vs法国

企业网站静态模板下载,直播:英格兰vs法国,wordpress 培训主题,关于做甜品的网站Flow Matching是通过匹配目标向量场来训练CNF,比如通过最小化目标向量场和模型预测之间的差异。 Rectified Flow的核心思想是学习一个确定性轨迹,将数据分布转换为噪声分布,比如通过线性插值或者更复杂的路径。 推荐阅读: SD3的采…

Flow Matching是通过匹配目标向量场来训练CNF,比如通过最小化目标向量场和模型预测之间的差异。
Rectified Flow的核心思想是学习一个确定性轨迹,将数据分布转换为噪声分布,比如通过线性插值或者更复杂的路径。

推荐阅读:
SD3的采样上篇——Flow Matching
SD3的采样下篇——Rectified Flow
FLUX.1 原理与源码解析


Rectified Flow和Flow Matching的区别

Rectified Flow和Flow Matching是生成模型中基于连续归一化流(CNF)的两种方法,它们既有联系又有区别。以下从原理、公式和代码实现三个方面进行解释。


原理对比

Flow Matching

  • 核心思想:通过直接匹配目标向量场(Target Vector Field)来训练CNF模型,最小化目标向量场和模型预测之间的差异,绕过了传统基于最大似然估计的复杂优化问题。
  • 关键点
    • 定义条件概率路径 p t ( x ) p_t(x) pt(x)(如将数据点 x 0 x_0 x0 和噪声 x 1 x_1 x1 插值),并推导对应的目标向量场 u t ( x ) u_t(x) ut(x)
    • 训练模型 v θ ( x , t ) v_\theta(x, t) vθ(x,t) 直接拟合 u t ( x ) u_t(x) ut(x),无需显式计算概率密度。

Rectified Flow

  • 核心思想:通过构造直线路径(如 x t = x 0 + t ( x 1 − x 0 ) x_t = x_0 + t(x_1 - x_0) xt=x0+t(x1x0))将数据分布转换为噪声分布,强调轨迹的“直线性”以简化采样。
  • 关键点
    • 强制轨迹为直线,减少曲率,从而允许更少的时间步采样。
    • 通过迭代优化(如Reflow技术)进一步拉直轨迹,提升生成质量。

公式对比

Flow Matching

  • 目标向量场
    假设条件路径 p t ( x ∣ x 1 ) p_t(x | x_1) pt(xx1) 由插值定义(如 x t = ( 1 − t ) x 0 + t x 1 x_t = (1-t)x_0 + t x_1 xt=(1t)x0+tx1),目标向量场为:
    u t ( x ) = E x 0 , x 1 ∼ p ( x 0 , x 1 ) [ d x t d t ∣ x t = x ] u_t(x) = \mathbb{E}_{x_0, x_1 \sim p(x_0, x_1)} \left[ \frac{dx_t}{dt} \mid x_t = x \right] ut(x)=Ex0,x1p(x0,x1)[dtdxtxt=x]
  • 损失函数
    最小化模型预测 v θ ( x , t ) v_\theta(x, t) vθ(x,t) 与目标场的差异:
    L FM = E t , x t [ ∥ v θ ( x t , t ) − u t ( x t ) ∥ 2 ] \mathcal{L}_{\text{FM}} = \mathbb{E}_{t, x_t} \left[ \| v_\theta(x_t, t) - u_t(x_t) \|^2 \right] LFM=Et,xt[vθ(xt,t)ut(xt)2]

Rectified Flow

  • 目标向量场
    直接定义直线路径 x t = x 0 + t ( x 1 − x 0 ) x_t = x_0 + t(x_1 - x_0) xt=x0+t(x1x0),目标速度为常数:
    u t ( x ) = x 1 − x 0 u_t(x) = x_1 - x_0 ut(x)=x1x0
  • 损失函数
    强制模型预测的速度与目标速度一致:
    L RF = E t , x 0 , x 1 [ ∥ v θ ( x t , t ) − ( x 1 − x 0 ) ∥ 2 ] \mathcal{L}_{\text{RF}} = \mathbb{E}_{t, x_0, x_1} \left[ \| v_\theta(x_t, t) - (x_1 - x_0) \|^2 \right] LRF=Et,x0,x1[vθ(xt,t)(x1x0)2]
  • Reflow技术
    迭代训练多个Rectified Flow模型,逐步拉直轨迹。

代码实现对比

Flow Matching示例(简化版)

def flow_matching_loss(model, x0, x1, t):# 线性插值生成样本xt = (1 - t) * x0 + t * x1# 目标向量场为 x1 - x0ut = x1 - x0# 模型预测当前速度vt = model(xt, t)# 计算均方误差loss = torch.mean((vt - ut) ** 2)return loss

Rectified Flow示例(简化版)

def rectified_flow_loss(model, x0, x1, t):# 直线路径生成样本xt = x0 + t * (x1 - x0)# 目标速度恒为 x1 - x0target_velocity = x1 - x0# 模型预测速度pred_velocity = model(xt, t)# 计算均方误差loss = torch.mean((pred_velocity - target_velocity) ** 2)return loss

关键区别

路径生成:
Flow Matching允许自由选择概率路径(如最优传输路径),而Rectified Flow强调直线路径和迭代优化(Reflow),牺牲部分灵活性以换取高效采样。
损失计算:
Rectified Flow的目标速度直接为 x 1 − x 0 x_1−x_0 x1x0,而Flow Matching可能根据不同的插值方式调整目标向量场。

http://www.hengruixuexiao.com/news/51403.html

相关文章:

  • 专业的丹阳网站建设怎么推广公众号让人关注
  • 网站发布方式 提高网站关键词在线优化
  • 网站开发项目需求分析各大网站的网址
  • 导航网站链接怎么做游戏推广员拉人犯法吗
  • 重庆网站制网络营销策划的基本原则是什么
  • 做公司网站需要什么材料品牌营销方案
  • 手机网站图片锚链接怎么做什么是关键词搜索
  • 网站开发毕业论文范文优化网络的软件
  • 酒店微信网站建设惠州抖音seo
  • 外贸做包装袋哪个网站好关键词统计工具有哪些
  • 做网站投资太大 网站也没搞起来长尾关键词搜索网站
  • 餐饮外哪个网站做推广肇庆seo按天收费
  • vip影视网站如何做app雅虎日本新闻
  • 北京网站建设工作室一元手游平台app
  • 做私人网站seo排名点击报价
  • 如何将网站加入百度图 推广10条重大新闻
  • 全屏 网站 代码深圳网
  • 成都市建设领域网站咨询电话优化教程网下载
  • 网站如何做宣传百度注册网站怎么弄
  • 网站的做网站公司十大广告公司
  • 怎么研发软件app全国最好网络优化公司
  • 做国外订单的网站关键词长尾词优化
  • 百度不收录我的网站百度 营销推广怎么做
  • 浙江网站建设企业优化网站关键词优化
  • 青岛网站制作系统网站优化建设
  • 镇江网站建设远航科技seo关键词排名优化app
  • 学做网站有用吗怎么上百度搜索
  • 城乡和住房建设部证书信息网武汉官网优化公司
  • 什么网站可以做注册任务网站推广的工作内容
  • 建设银行官方网站首页app推广接单平台