当前位置: 首页 > news >正文

wordpress 嵌入网址流程优化四个方法

wordpress 嵌入网址,流程优化四个方法,天津学网站建设,网站建设怎么插入gif一、分布式的思想 不管是数据也好,计算也好,都没有最大的电脑,而是多个小电脑组合而成。 存储:将3T的文件拆分成若干个小文件,例如每500M一个小文件,将这些小文件存储在不同的机器上 。 -- HDFS 计算&#…

一、分布式的思想

不管是数据也好,计算也好,都没有最大的电脑,而是多个小电脑组合而成。

存储:将3T的文件拆分成若干个小文件,例如每500M一个小文件,将这些小文件存储在不同的机器上 。 -- HDFS

计算:

分:将一个大的任务拆分成多个小的任务,每台机器处理一 个小的任务,并行处理

合:将多个小任务的结果最终再合并生成最终的结果进行返 回问题解决 。

--MapReduce (Hive)

Spark 解决不了存储的问题,spark是搞计算的。你学习了spark,以前的计算引擎都可以作废了。Spark可以做离线的计算可以做准实时(实时计算目前使用Flink比较多)

发展 :计算引擎 ---存储还得是hdfs

第一代计算引擎:MapReduce:用廉价机器实现分布式大数据处理

第二代计算引擎:Tez:基于MR优化了DAG,性能比MR快一些

第三代计算引擎:Spark:优先使用内存式计算引擎 ,国内目前主要应用的离线计算引擎

第四代计算引擎:Flink:实时流式计算引擎 , 国内目前最主流实时计算引擎

二、Spark简介 [火花]

1、发展历程

DataBricks官网:https://databricks.com/spark/about

spark的诞生其实是因为MR计算引擎太慢了。

MR计算是基于磁盘的,Spark计算是基于内存的。

spark的发展历程:

2009年,Spark诞生于伯克利AMPLab,伯克利大学的研究性项目。

2014年2月成为Apache顶级项目,同年5月发布Spark 1.0正式版本

2018年Spark2.4.0发布,成为全球最大的开源项目,目前是Apache中的顶级项目之一。

2020年6月Spark发布3.0.0正式版,目前学习的就是3.x

apache给它分配的网站:Apache Spark™ - Unified Engine for large-scale data analytics

定义:基于内存式计算的分布式的统一化的数据分析引擎。

分析引擎:hive 、spark、presto、impala 等。所谓的引擎,狭义理解就是sql

2、spark能做什么?

实现离线数据批处理:类似于MapReduce、Pandas,写代码做处理:代码类的离线数据处理

实现交互式即时数据查询:类似于Hive、Presto、Impala,使 用SQL做即席查询分析:SQL类的离线数据处理

实现实时数据处理:类似于Storm、Flink实现分布式的实时计算:代码类实时计算或者SQL类的实时计算

实现机器学习的开发:代替传统一些机器学习工具

3、spark有哪些部分组成?

Hadoop的组成部分:common、MapReduce、Hdfs、Yarn

Spark Core:Spark最核心的模块,可以基于多种语言实现代码类的离线开发 【类似于MR】

Spark SQL:类似于Hive,基于SQL进行开发,SQL会转换为SparkCore离线程序 【类似Hive】

Spark Streaming:基于SparkCore之上构建了准实时的计算模块 【淘汰了】

Struct Streaming:基于SparkSQL之上构建了结构化实时计算模块 【替代了Spark Streaming】

Spark ML lib:机器学习算法库,提供各种机器学习算法工具,可以基于SparkCore或者SparkSQL实现开发。

开发语言:Python、SQL、Scala、Java、R【Spark的源码是通过Scala语言开发的

一个软件是什么语言写的,跟什么语言可以操作这个软件是两回事儿。

Scala 语言是基于java实现的,底层也需要虚拟机。

4、spark运行有五种模式【重点】

本地模式:Local:一般用于做测试,验证代码逻辑,不是分布式运行,只会启动1个进程来运行所有任务。

集群模式:Cluster:一般用于生产环境,用于实现PySpark程序的分布式的运行

Standalone:Spark自带的分布式资源平台,功能类似于YARN

YARN:Spark on YARN,将Spark程序提交给YARN来运行,工作中主要使用的模式

Mesos:类似于YARN,国外见得多,国内基本见不到

K8s:基于分布式容器的资源管理平台,运维层面的工具。

解释:Spark是一个分布式的分析引擎,所以它部署的时候是分布式的,有用主节点,从节点这些内容。Standalone使用的是Spark自带的分布式资源平台,但是假如一个公司已经有Yarn分析平台了,就没必要再搭建spark分析平台,浪费资源。

学习过程中:本地模式 --> Standalone --> YARN ,将来spark在yarn上跑。

5、spark 为什么比MR快?

1、MR不支持DAG【有向无环图】,计算过程是固定,一个MR 只有1个Map和1个Reduce构成。 一个Map和Reduce是一个过程,和另一个Map和Reduce是不一样的。

从落地到磁盘的那一刻,上一个过程已经结束了,下一个过程和上一个过程没有关系了。

2、MR是一个基于磁盘的计算框架,读写效率比较低

3、MR的Task计算是进程级别的,每次运行一个Task都需要启动一个进程,然后运行结束还是释放进程,比较慢。【一个进程可以包含多个线程,比如qq是一个进程,发消息,传文件是一个个线程】

MapTask:进程

ReduceTask:进程

进程启动和销毁是比较耗时的

spark为什么那么快?

1、Spark支持DAG,一个Spark程序中的过程是不固定,由代码 所决定。

2、Task任务都是线程级别的

3、计算是基于内存的。

 

总结:1.数据结构一个HDFS,一个是RDD

2.计算流结构一个用的MR,一个是DAG

3.中间存储一个放到磁盘,一个全在内存

4.运行方式一个用进程,一个是线程

一、Standalone集群环境安装

1、理解Standalone集群架构

image.png

image.png


架构:普通分布式主从架构
主:Master:管理节点:管理从节点、接客、资源管理和任务
调度,等同于YARN中的ResourceManager
从:Worker:计算节点:负责利用自己节点的资源运行主节点
分配的任务
功能:提供分布式资源管理和任务调度,基本上与YARN是一致的
看着很像Yarn,其实作用跟yarn一样,是spark自带的计算平台。
每一台服务器上都要安装Annaconda ,否则会出现python3 找不到的错误!!
2、Standalone集群部署
第一步:将bigdata02和bigdata03安装Annaconda,因为里面有python3环境,假如没有安装的话,就报这个错误:

http://www.hengruixuexiao.com/news/50563.html

相关文章:

  • 有没有专业做steam创客的网站自动秒收录网
  • 微信小程序平台官网登录入口网站运营推广选择乐云seo
  • wordpress 回复显示西安搜索引擎优化
  • 免费试用网站源码怎么设计一个网页
  • 温州网牌电线电缆有限公司游戏优化大师下载安装
  • 河南省建设执业资格中心网站地推网推平台
  • 开源项目网站怎么做 带视频猪八戒网接单平台
  • h5成品网站无锡谷歌优化
  • 一个简单的个人主页福州短视频seo平台
  • 西安知名的集团门户网站建设公司北京seo公司助力网络营销
  • 网站建设价格是哪些方面决定的万能软文范例800字
  • 什么网站能免费做公众号封面站内推广的方法和工具
  • 有空间与域名 怎么做网站排名优化关键词公司
  • 金融做市场广告挂哪些网站网站整站优化推广方案
  • 做网站用什么软件ps字体武汉网站推广很 棒
  • 哪些网站做代理中国搜索引擎排名2021
  • .net网站开发技术简介属于免费的网络营销方式
  • 做界面网站用什么语言好企业seo网站营销推广
  • 江门网站制作维护java培训机构十强
  • 做网络营销如何建立自己的网站长沙疫情最新数据消息
  • 怎么用PS做网站横幅交换链接营销案例
  • 小米路由器建设网站网络营销就业方向和前景
  • 策划公司网站建设淘宝优秀软文范例100字
  • 建设银行打印回单网站制作网站要找什么公司
  • 国外做饮料视频网站建立公司网站需要多少钱
  • 做301跳转会影响之前网站排名吗美国搜索引擎浏览器
  • 网站开发工程师面试题互联网营销做什么
  • 做企业英语网站要注意哪些seo培训优化
  • 房山做网站公司seo网站优化价格
  • 上市公司网站建设网站优化团队