当前位置: 首页 > news >正文

h5动画制作软件武汉百度搜索优化

h5动画制作软件,武汉百度搜索优化,为网站开发app,最专业的网站建设推广一、介绍 2023年06月25日,清华大学开源了 ChatGLM2-6B 模型,是 ChatGLM 模型的升级版本。ChatGLM2-6B 在多个方面有显著提升:模型性能更强,在各种测试集上的表现更好;支持更长的上下文,最大上下文长度提升…

一、介绍

2023年06月25日,清华大学开源了 ChatGLM2-6B 模型,是 ChatGLM 模型的升级版本。ChatGLM2-6B 在多个方面有显著提升:模型性能更强,在各种测试集上的表现更好;支持更长的上下文,最大上下文长度提升到 32k;推理速度提高42%,能支持更长的生成;开源许可更加开放,允许商业使用。ChatGLM2-6B在多个维度的能力上取得了巨大提升,包括数理逻辑、知识推理和长文档理解。

模型性能提升主要来自升级的基座模型、混合了 GLM 目标函数、使用 FlashAttention 和Multi-Query Attention 技术。它整合了最新技术,在推理速度、生成长度、知识涵盖等方面取得突破,使人机对话能力更强大。

ChatGLM2-6B(GitHub项目地址、HuggingFace地址)是开源中英双语对话模型 ,相比第一代,第二点引入了如下新特性:

  1. 数据集上

    经过了 1.4T 中英标识符的预训练与人类偏好对齐训练

  2. 更长的上下文

    基于 FlashAttention 技术,将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话
    (当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,会在后续迭代升级中着重进行优化)

  3. 更高效的推理

    基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K

  4. 模型架构上变成了decoder only的架构

    chatglm还是encoder架构,但是到了chatglm2 变成了decoder only的架构(这点很少有资料会提及到),何以见得呢?
    chatglm2仓库的modeling用了新版pytorch的这个函数:context_layer​

    context_layer 这个函数实现了attention机制的计算,入参 is_causal=True 表示遮后看前的mask(这种类型的注意力通常用在transformer的decoder部分,以确保当前位置只能关注到之前的位置,俗称“看不见未来”,从而使模型可以进行自回归预测 )

  5. 允许商业使用

  6. 准确性不足

    尽管模型在训练的各个阶段都尽力确保数据的合规性和准确性,但由于 ChatGLM2-6B 模型规模较小,且模型受概率随机性因素影响,无法保证输出内容的准确性,且模型易被误导

对比:ChatGLM-6B、ChatGLM2-6B

在这里插入图片描述

  1. 充分的中英双语预训练: ChatGLM2-6B 在 1:1 比例的中英语料上训练了 1.4T的token 量(*4倍≈5G的语料),兼具双语能力,相比于ChatGLM-6B初代模型,性能大幅提升。
  2. 较低的部署门槛: FP16 半精度下,ChatGLM-6B 需要至少13GB 的显存进行推理,结合模型量化技术,这一需求可以进一步降低到10GB(INT8)和 6GB(INT4), 使得 ChatGLM-6B 可以部署在消费级显卡上。
  3. 更长的序列长度: 相比GLM-10B(序列长度1024), ChatGLM-6B序列长度达 2048,ChatGLM2-6B序列 长度达8192(≈1万多的文字),支持更长对话和应用。
  4. 人类意图对齐训练: 使用了监督微调、反馈自助、人类反馈强化学习等方式,使模型初具理解人类指令意图的能力。

二、模型部署

1、拉取代码

git clone https://github.com/THUDM/ChatGLM2-6Bcd ChatGLM2-6Bpip install -r requirements.txt

2、代码调用

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True, device='cuda')
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)
>>> response, history = model.chat(tokenizer, "请问钓鱼有什么技巧", history=history)
>>> print(response)

3、web部署

pip install gradio
python web_demo.py
#默认使用了 share=False 启动,不会生成公网链接。如有需要公网访问的需求,可以修改为 share=True 启动
#基于 Streamlit 的网页版 Demo web_demo2.py
pip install streamlit streamlit-chat
streamlit run web_demo2.py

4、命令行

python cli_demo.py
#程序会在命令行中进行交互式的对话,在命令行中输入指示并回车即可生成回复,输入 clear 可以清空对话历史,输入 stop 终止程序。

5、api部署

pip install fastapi uvicorn
python api.py

默认部署在本地的 8000 端口,通过 POST 方法进行调用

curl -X POST "http://127.0.0.1:8000" \-H 'Content-Type: application/json' \-d '{"prompt": "你好", "history": []}'
{"response":"你好👋!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。","history":[["你好","你好👋!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。"]],"status":200,"time":"2023-03-23 21:38:40"
}
http://www.hengruixuexiao.com/news/50405.html

相关文章:

  • 做网站便宜还是app便宜常见的营销方式有哪些
  • 建立个人网站的目的discuz论坛seo设置
  • 南阳企业网站制作chatgpt中文在线
  • 网站关健词排名谷歌浏览器下载手机版最新版
  • 女生做seo网站推广广州新闻发布
  • 做动感影集的网站北京网站建设公司大全
  • 曼奇立德原画培训多少钱北京seo网站开发
  • blog网站开发实例windows优化大师值得买吗
  • 漳州网站建设bt磁力
  • 建设网站的本质谷歌网站优化
  • 如何做销售网站百度投诉中心热线
  • 实验室建设网站广州白云区今天的消息
  • 智慧旅游门户网站建设网店代运营一年的费用是多少
  • 512m内存做网站百度检索入口
  • 网页设计制作一个餐饮网站昆山网站建设公司
  • 网站制作 郑州网络推广方式有哪些
  • 买了虚拟主机怎么做网站山东seo百度推广
  • 虎门做网站的公司什么网站推广比较好
  • 专业的网站制作正规公司百度产品大全首页
  • 怎么修改网站关键词百度网站的网址是什么
  • 南沙做网站百度搜图入口
  • 会员管理系统手机免费版广州seo推广营销
  • 广东省人民政府seo网站优化报价
  • b2c网站html关键词生成器 在线
  • 做钢材什么网站好东莞疫情最新数据
  • 哪个浏览器可以看禁止网站seo优化或网站编辑
  • 厦门网站的关键词自动排名百度云网盘登录入口
  • 衢州建筑地基加固win10优化软件哪个好
  • 接私活做网站设计潍坊做网站哪家好
  • 值得买 wordpress班级优化大师官网下载