当前位置: 首页 > news >正文

动态网站建设实训周实训心得爱站网络挖掘词

动态网站建设实训周实训心得,爱站网络挖掘词,旅游企业网站开发,连云港网站建设案例OpenCV关于 光流的教程 文章目录 第 8 讲 视觉里程计 28.2 光流8.3 实践: LK 光流 【Code】本讲 CMakeLists.txt 8.4 直接法8.5 实践: 双目的稀疏直接法 【Code】8.5.4 直接法的优缺点 习题 8√ 题1 光流方法题2题3题4题5 第 8 讲 视觉里程计 2 P205 …

OpenCV关于 光流的教程
在这里插入图片描述

文章目录

  • 第 8 讲 视觉里程计 2
    • 8.2 光流
    • 8.3 实践: LK 光流 【Code】
          • 本讲 CMakeLists.txt
    • 8.4 直接法
    • 8.5 实践: 双目的稀疏直接法 【Code】
      • 8.5.4 直接法的优缺点
    • 习题 8
      • √ 题1 光流方法
      • 题2
      • 题3
      • 题4
      • 题5

第 8 讲 视觉里程计 2

P205 第8讲
光流法 跟踪 特征点
直接法 估计相机位姿
多层直接法

8.1 直接法

第 7 讲 使用特征点 估计 相机运动
缺点:
1、关键点的提取 与 描述子的计算 非常耗时
2、只使用 特征点,丢弃了大部分 可能有用的图像信息
3、无明显纹理信息的地方(白墙、空走廊),无法匹配

改进思路:
在这里插入图片描述
直接法不保留特征点
在这里插入图片描述
特征点法 估计 相机运动: 最小化 重投影误差(Reprojection error)
直接法:最小化 光度误差(Photometric error)。根据 像素的亮度信息估计相机运动

特征点法: 只能重构稀疏地图
直接法: 稀疏、稠密、半稠密

在这里插入图片描述

8.2 光流

直接法光流 演变
同:相同的假设条件
异:光流描述了像素在图像中的运动,直接法附带一个相机模型。

光流: 描述 像素 随时间 在图像之间运动的方法

稀疏光流: 计算部分像素运动。 Lucas-Kanade光流 【LK光流
稠密光流: 计算所有像素。 Horn-Schunck光流

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
所有算法都是在一定假设下工作的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

LK 光流 常被用来 跟踪角点的运动。

8.3 实践: LK 光流 【Code】

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
8.3.2 用高斯牛顿法 实现光流
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本讲 CMakeLists.txt
cmake_minimum_required(VERSION 2.8)
project(ch8)set(CMAKE_BUILD_TYPE "Release")
add_definitions("-DENABLE_SSE")
set(CMAKE_CXX_FLAGS "-std=c++11 ${SSE_FLAGS} -g -O3 -march=native")find_package(OpenCV 4 REQUIRED)
find_package(Sophus REQUIRED)
find_package(Pangolin REQUIRED)include_directories(${OpenCV_INCLUDE_DIRS}${G2O_INCLUDE_DIRS}${Sophus_INCLUDE_DIRS}"/usr/include/eigen3/"${Pangolin_INCLUDE_DIRS}
)add_executable(optical_flow optical_flow.cpp)
target_link_libraries(optical_flow ${OpenCV_LIBS})#[[   # 块注释
add_executable(direct_method direct_method.cpp)
target_link_libraries(direct_method ${OpenCV_LIBS} ${Pangolin_LIBRARIES} ${Sophus_LIBRARIES})
]]

报错:

/home/xixi/Downloads/slambook2-master/ch8/optical_flow.cpp:145:37: error: ‘CV_GRAY2BGR’ was not declared in this scope145 |     cv::cvtColor(img2, img2_single, CV_GRAY2BGR);

改为 cv::COLOR_GRAY2BGR。有3个地方

要是 cd build 还要改图片路径。

mkdir build && cd build 
cmake ..
make 
./optical_flow

在这里插入图片描述
在这里插入图片描述
optical_flow.cpp

//
// Created by Xiang on 2017/12/19.
//#include <opencv2/opencv.hpp>
#include <string>
#include <chrono>
#include <Eigen/Core>
#include <Eigen/Dense>using namespace std;
using namespace cv;string file_1 = "../LK1.png";  // first image
string file_2 = "../LK2.png";  // second image/// Optical flow tracker and interface
class OpticalFlowTracker {
public:OpticalFlowTracker(const Mat &img1_,const Mat &img2_,const vector<KeyPoint> &kp1_,vector<KeyPoint> &kp2_,vector<bool> &success_,bool inverse_ = true, bool has_initial_ = false) :img1(img1_), img2(img2_), kp1(kp1_), kp2(kp2_), success(success_), inverse(inverse_),has_initial(has_initial_) {}void calculateOpticalFlow(const Range &range);private:const Mat &img1;const Mat &img2;const vector<KeyPoint> &kp1;vector<KeyPoint> &kp2;vector<bool> &success;bool inverse = true;bool has_initial = false;
};/*** single level optical flow* @param [in] img1 the first image* @param [in] img2 the second image* @param [in] kp1 keypoints in img1* @param [in|out] kp2 keypoints in img2, if empty, use initial guess in kp1* @param [out] success true if a keypoint is tracked successfully* @param [in] inverse use inverse formulation?*/
void OpticalFlowSingleLevel(const Mat &img1,const Mat &img2,const vector<KeyPoint> &kp1,vector<KeyPoint> &kp2,vector<bool> &success,bool inverse = false,bool has_initial_guess = false
);/*** multi level optical flow, scale of pyramid is set to 2 by default* the image pyramid will be create inside the function* @param [in] img1 the first pyramid* @param [in] img2 the second pyramid* @param [in] kp1 keypoints in img1* @param [out] kp2 keypoints in img2* @param [out] success true if a keypoint is tracked successfully* @param [in] inverse set true to enable inverse formulation*/
void OpticalFlowMultiLevel(const Mat &img1,const Mat &img2,const vector<KeyPoint> &kp1,vector<KeyPoint> &kp2,vector<bool> &success,bool inverse = false
);/*** get a gray scale value from reference image (bi-linear interpolated)* @param img* @param x* @param y* @return the interpolated value of this pixel*/inline float GetPixelValue(const cv::Mat &img, float x, float y) {// boundary checkif (x < 0) x = 0;if (y < 0) y = 0;if (x >= img.cols - 1) x = img.cols - 2;if (y >= img.rows - 1) y = img.rows - 2;float xx = x - floor(x);float yy = y - floor(y);int x_a1 = std::min(img.cols - 1, int(x) + 1);int y_a1 = std::min(img.rows - 1, int(y) + 1);return (1 - xx) * (1 - yy) * img.at<uchar>(y, x)+ xx * (1 - yy) * img.at<uchar>(y, x_a1)+ (1 - xx) * yy * img.at<uchar>(y_a1, x)+ xx * yy * img.at<uchar>(y_a1, x_a1);
}int main(int argc, char **argv) {// images, note they are CV_8UC1, not CV_8UC3Mat img1 = imread(file_1, 0);Mat img2 = imread(file_2, 0);// key points, using GFTT here.vector<KeyPoint> kp1;Ptr<GFTTDetector> detector = GFTTDetector::create(500, 0.01, 20); // maximum 500 keypointsdetector->detect(img1, kp1);// now lets track these key points in the second image// first use single level LK in the validation picturevector<KeyPoint> kp2_single;vector<bool> success_single;OpticalFlowSingleLevel(img1, img2, kp1, kp2_single, success_single);// then test multi-level LKvector<KeyPoint> kp2_multi;vector<bool> success_multi;chrono::steady_clock::time_point t1 = chrono::steady_clock::now();OpticalFlowMultiLevel(img1, img2, kp1, kp2_multi, success_multi, true);chrono::steady_clock::time_point t2 = chrono::steady_clock::now();auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);cout << "optical flow by gauss-newton: " << time_used.count() << endl;// use opencv's flow for validationvector<Point2f> pt1, pt2;for (auto &kp: kp1) pt1.push_back(kp.pt);vector<uchar> status;vector<float> error;t1 = chrono::steady_clock::now();cv::calcOpticalFlowPyrLK(img1, img2, pt1, pt2, status, error);t2 = chrono::steady_clock::now();time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);cout << "optical flow by opencv: " << time_used.count() << endl;// plot the differences of those functionsMat img2_single;cv::cvtColor(img2, img2_single, cv::COLOR_GRAY2BGR);for (int i = 0; i < kp2_single.size(); i++) {if (success_single[i]) {cv::circle(img2_single, kp2_single[i].pt, 2, cv::Scalar(0, 250, 0), 2);cv::line(img2_single, kp1[i].pt, kp2_single[i].pt, cv::Scalar(0, 250, 0));}}Mat img2_multi;cv::cvtColor(img2, img2_multi, cv::COLOR_GRAY2BGR);for (int i = 0; i < kp2_multi.size(); i++) {if (success_multi[i]) {cv::circle(img2_multi, kp2_multi[i].pt, 2, cv::Scalar(0, 250, 0), 2);cv::line(img2_multi, kp1[i].pt, kp2_multi[i].pt, cv::Scalar(0, 250, 0));}}Mat img2_CV;cv::cvtColor(img2, img2_CV, cv::COLOR_GRAY2BGR);for (int i = 0; i < pt2.size(); i++) {if (status[i]) {cv::circle(img2_CV, pt2[i], 2, cv::Scalar(0, 250, 0), 2);cv::line(img2_CV, pt1[i], pt2[i], cv::Scalar(0, 250, 0));}}cv::imshow("tracked single level", img2_single);cv::imshow("tracked multi level", img2_multi);cv::imshow("tracked by opencv", img2_CV);cv::waitKey(0);return 0;
}void OpticalFlowSingleLevel(const Mat &img1,const Mat &img2,const vector<KeyPoint> &kp1,vector<KeyPoint> &kp2,vector<bool> &success,bool inverse, bool has_initial) {kp2.resize(kp1.size());success.resize(kp1.size());OpticalFlowTracker tracker(img1, img2, kp1, kp2, success, inverse, has_initial);parallel_for_(Range(0, kp1.size()),std::bind(&OpticalFlowTracker::calculateOpticalFlow, &tracker, placeholders::_1));
}void OpticalFlowTracker::calculateOpticalFlow(const Range &range) {// parametersint half_patch_size = 4;int iterations = 10;for (size_t i = range.start; i < range.end; i++) {auto kp = kp1[i];double dx = 0, dy = 0; // dx,dy need to be estimatedif (has_initial) {dx = kp2[i].pt.x - kp.pt.x;dy = kp2[i].pt.y - kp.pt.y;}double cost = 0, lastCost = 0;bool succ = true; // indicate if this point succeeded// Gauss-Newton iterationsEigen::Matrix2d H = Eigen::Matrix2d::Zero();    // hessianEigen::Vector2d b = Eigen::Vector2d::Zero();    // biasEigen::Vector2d J;  // jacobianfor (int iter = 0; iter < iterations; iter++) {if (inverse == false) {H = Eigen::Matrix2d::Zero();b = Eigen::Vector2d::Zero();} else {// only reset bb = Eigen::Vector2d::Zero();}cost = 0;// compute cost and jacobianfor (int x = -half_patch_size; x < half_patch_size; x++)for (int y = -half_patch_size; y < half_patch_size; y++) {double error = GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y) -GetPixelValue(img2, kp.pt.x + x + dx, kp.pt.y + y + dy);;  // Jacobianif (inverse == false) {J = -1.0 * Eigen::Vector2d(0.5 * (GetPixelValue(img2, kp.pt.x + dx + x + 1, kp.pt.y + dy + y) -GetPixelValue(img2, kp.pt.x + dx + x - 1, kp.pt.y + dy + y)),0.5 * (GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y + 1) -GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y - 1)));} else if (iter == 0) {// in inverse mode, J keeps same for all iterations// NOTE this J does not change when dx, dy is updated, so we can store it and only compute errorJ = -1.0 * Eigen::Vector2d(0.5 * (GetPixelValue(img1, kp.pt.x + x + 1, kp.pt.y + y) -GetPixelValue(img1, kp.pt.x + x - 1, kp.pt.y + y)),0.5 * (GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y + 1) -GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y - 1)));}// compute H, b and set cost;b += -error * J;cost += error * error;if (inverse == false || iter == 0) {// also update HH += J * J.transpose();}}// compute updateEigen::Vector2d update = H.ldlt().solve(b);if (std::isnan(update[0])) {// sometimes occurred when we have a black or white patch and H is irreversiblecout << "update is nan" << endl;succ = false;break;}if (iter > 0 && cost > lastCost) {break;}// update dx, dydx += update[0];dy += update[1];lastCost = cost;succ = true;if (update.norm() < 1e-2) {// convergebreak;}}success[i] = succ;// set kp2kp2[i].pt = kp.pt + Point2f(dx, dy);}
}void OpticalFlowMultiLevel(const Mat &img1,const Mat &img2,const vector<KeyPoint> &kp1,vector<KeyPoint> &kp2,vector<bool> &success,bool inverse) {// parametersint pyramids = 4;double pyramid_scale = 0.5;double scales[] = {1.0, 0.5, 0.25, 0.125};// create pyramidschrono::steady_clock::time_point t1 = chrono::steady_clock::now();vector<Mat> pyr1, pyr2; // image pyramidsfor (int i = 0; i < pyramids; i++) {if (i == 0) {pyr1.push_back(img1);pyr2.push_back(img2);} else {Mat img1_pyr, img2_pyr;cv::resize(pyr1[i - 1], img1_pyr,cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));cv::resize(pyr2[i - 1], img2_pyr,cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));pyr1.push_back(img1_pyr);pyr2.push_back(img2_pyr);}}chrono::steady_clock::time_point t2 = chrono::steady_clock::now();auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);cout << "build pyramid time: " << time_used.count() << endl;// coarse-to-fine LK tracking in pyramidsvector<KeyPoint> kp1_pyr, kp2_pyr;for (auto &kp:kp1) {auto kp_top = kp;kp_top.pt *= scales[pyramids - 1];kp1_pyr.push_back(kp_top);kp2_pyr.push_back(kp_top);}for (int level = pyramids - 1; level >= 0; level--) {// from coarse to finesuccess.clear();t1 = chrono::steady_clock::now();OpticalFlowSingleLevel(pyr1[level], pyr2[level], kp1_pyr, kp2_pyr, success, inverse, true);t2 = chrono::steady_clock::now();auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);cout << "track pyr " << level << " cost time: " << time_used.count() << endl;if (level > 0) {for (auto &kp: kp1_pyr)kp.pt /= pyramid_scale;for (auto &kp: kp2_pyr)kp.pt /= pyramid_scale;}}for (auto &kp: kp2_pyr)kp2.push_back(kp);
}

在这里插入图片描述

8.4 直接法

光流: 首先追踪特征点位置,再根据这些位置确定相机的运动

  • 很难保证全局的最优性。

——> 在后一步中,调整前一步的结果。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

稀疏直接法:关键点,假设周围像素不变(因此不必计算描述子)。可快速求解相机位姿。
半稠密直接法:只使用带有梯度的像素点
稠密直接法:多数需要GPU加速

8.5 实践: 双目的稀疏直接法 【Code】

基于特征点的深度恢复(三角化)
基于块匹配的深度恢复

多层直接法 金字塔式

在这里插入图片描述
输出: 每个图像的每层金字塔上的追踪点,并输出运行时间。

源码改动:
1、在这里插入图片描述
所有 SE3d 去掉 d

2、改路径
3、报错3

/home/xixi/Downloads/slambook2-master/ch8/direct_method.cpp:206:35: error: ‘CV_GRAY2BGR’ was not declared in this scope206 |     cv::cvtColor(img2, img2_show, CV_GRAY2BGR);

改为 cv::COLOR_GRAY2BGR。有3个地方

4、报错4

/usr/bin/ld: CMakeFiles/direct_method.dir/direct_method.cpp.o: in function `JacobianAccumulator::accumulate_jacobian(cv::Range const&)':
/home/xixi/Downloads/slambook2-master/ch8/direct_method.cpp:235: undefined reference to `Sophus::SE3::operator*(Eigen::Matrix<double, 3, 1, 0, 3, 1> const&) const'
/usr/bin/ld: CMakeFiles/direct_method.dir/direct_method.cpp.o: in function `DirectPoseEstimationSingleLayer(cv::Mat const&, cv::Mat const&, std::vector<Eigen::Matrix<double, 2, 1, 0, 2, 1>, Eigen::aligned_allocator<Eigen::Matrix<double, 2, 1, 0, 2, 1> > > const&, std::vector<double, std::allocator<double> >, Sophus::SE3&)':
/home/xixi/Downloads/slambook2-master/ch8/direct_method.cpp:178: undefined reference to `Sophus::SE3::exp(Eigen::Matrix<double, 6, 1, 0, 6, 1> const&)'
/usr/bin/ld: /home/xixi/Downloads/slambook2-master/ch8/direct_method.cpp:178: undefined reference to `Sophus::SE3::operator*(Sophus::SE3 const&) const'

Sophus库链接问题

add_executable(direct_method direct_method.cpp)
target_link_libraries(direct_method ${OpenCV_LIBS} ${Pangolin_LIBRARIES} ${Sophus_LIBRARIES})
byzanz-record -x 146 -y 104 -w 786 -h 533  -d 20 --delay=5 -c  /home/xixi/myGIF/test.gif

在这里插入图片描述

这里程序运行感觉不太对,暂时不清楚哪里。

direct_method.cpp

#include <opencv2/opencv.hpp>
#include <sophus/se3.h>
#include <boost/format.hpp>
#include <pangolin/pangolin.h>using namespace std;typedef vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d>> VecVector2d;// Camera intrinsics
double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157;
// baseline
double baseline = 0.573;
// paths
string left_file = "../left.png";
string disparity_file = "../disparity.png";
boost::format fmt_others("../%06d.png");    // other files// useful typedefs
typedef Eigen::Matrix<double, 6, 6> Matrix6d;
typedef Eigen::Matrix<double, 2, 6> Matrix26d;
typedef Eigen::Matrix<double, 6, 1> Vector6d;/// class for accumulator jacobians in parallel
class JacobianAccumulator {
public:JacobianAccumulator(const cv::Mat &img1_,const cv::Mat &img2_,const VecVector2d &px_ref_,const vector<double> depth_ref_,Sophus::SE3 &T21_) :img1(img1_), img2(img2_), px_ref(px_ref_), depth_ref(depth_ref_), T21(T21_) {projection = VecVector2d(px_ref.size(), Eigen::Vector2d(0, 0));}/// accumulate jacobians in a rangevoid accumulate_jacobian(const cv::Range &range);/// get hessian matrixMatrix6d hessian() const { return H; }/// get biasVector6d bias() const { return b; }/// get total costdouble cost_func() const { return cost; }/// get projected pointsVecVector2d projected_points() const { return projection; }/// reset h, b, cost to zerovoid reset() {H = Matrix6d::Zero();b = Vector6d::Zero();cost = 0;}private:const cv::Mat &img1;const cv::Mat &img2;const VecVector2d &px_ref;const vector<double> depth_ref;Sophus::SE3 &T21;VecVector2d projection; // projected pointsstd::mutex hessian_mutex;Matrix6d H = Matrix6d::Zero();Vector6d b = Vector6d::Zero();double cost = 0;
};/*** pose estimation using direct method* @param img1* @param img2* @param px_ref* @param depth_ref* @param T21*/
void DirectPoseEstimationMultiLayer(const cv::Mat &img1,const cv::Mat &img2,const VecVector2d &px_ref,const vector<double> depth_ref,Sophus::SE3 &T21
);/*** pose estimation using direct method* @param img1* @param img2* @param px_ref* @param depth_ref* @param T21*/
void DirectPoseEstimationSingleLayer(const cv::Mat &img1,const cv::Mat &img2,const VecVector2d &px_ref,const vector<double> depth_ref,Sophus::SE3 &T21
);// bilinear interpolation
inline float GetPixelValue(const cv::Mat &img, float x, float y) {// boundary checkif (x < 0) x = 0;if (y < 0) y = 0;if (x >= img.cols) x = img.cols - 1;if (y >= img.rows) y = img.rows - 1;uchar *data = &img.data[int(y) * img.step + int(x)];float xx = x - floor(x);float yy = y - floor(y);return float((1 - xx) * (1 - yy) * data[0] +xx * (1 - yy) * data[1] +(1 - xx) * yy * data[img.step] +xx * yy * data[img.step + 1]);
}int main(int argc, char **argv) {cv::Mat left_img = cv::imread(left_file, 0);cv::Mat disparity_img = cv::imread(disparity_file, 0);// let's randomly pick pixels in the first image and generate some 3d points in the first image's framecv::RNG rng;int nPoints = 2000;int boarder = 20;VecVector2d pixels_ref;vector<double> depth_ref;// generate pixels in ref and load depth datafor (int i = 0; i < nPoints; i++) {int x = rng.uniform(boarder, left_img.cols - boarder);  // don't pick pixels close to boarderint y = rng.uniform(boarder, left_img.rows - boarder);  // don't pick pixels close to boarderint disparity = disparity_img.at<uchar>(y, x);double depth = fx * baseline / disparity; // you know this is disparity to depthdepth_ref.push_back(depth);pixels_ref.push_back(Eigen::Vector2d(x, y));}// estimates 01~05.png's pose using this informationSophus::SE3 T_cur_ref;for (int i = 1; i < 6; i++) {  // 1~10cv::Mat img = cv::imread((fmt_others % i).str(), 0);// try single layer by uncomment this line// DirectPoseEstimationSingleLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);DirectPoseEstimationMultiLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);}return 0;
}void DirectPoseEstimationSingleLayer(const cv::Mat &img1,const cv::Mat &img2,const VecVector2d &px_ref,const vector<double> depth_ref,Sophus::SE3 &T21) {const int iterations = 10;double cost = 0, lastCost = 0;auto t1 = chrono::steady_clock::now();JacobianAccumulator jaco_accu(img1, img2, px_ref, depth_ref, T21);for (int iter = 0; iter < iterations; iter++) {jaco_accu.reset();cv::parallel_for_(cv::Range(0, px_ref.size()),std::bind(&JacobianAccumulator::accumulate_jacobian, &jaco_accu, std::placeholders::_1));Matrix6d H = jaco_accu.hessian();Vector6d b = jaco_accu.bias();// solve update and put it into estimationVector6d update = H.ldlt().solve(b);;T21 = Sophus::SE3::exp(update) * T21;cost = jaco_accu.cost_func();if (std::isnan(update[0])) {// sometimes occurred when we have a black or white patch and H is irreversiblecout << "update is nan" << endl;break;}if (iter > 0 && cost > lastCost) {cout << "cost increased: " << cost << ", " << lastCost << endl;break;}if (update.norm() < 1e-3) {// convergebreak;}lastCost = cost;cout << "iteration: " << iter << ", cost: " << cost << endl;}cout << "T21 = \n" << T21.matrix() << endl;auto t2 = chrono::steady_clock::now();auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);cout << "direct method for single layer: " << time_used.count() << endl;// plot the projected pixels herecv::Mat img2_show;cv::cvtColor(img2, img2_show, cv::COLOR_GRAY2BGR);VecVector2d projection = jaco_accu.projected_points();for (size_t i = 0; i < px_ref.size(); ++i) {auto p_ref = px_ref[i];auto p_cur = projection[i];if (p_cur[0] > 0 && p_cur[1] > 0) {cv::circle(img2_show, cv::Point2f(p_cur[0], p_cur[1]), 2, cv::Scalar(0, 250, 0), 2);cv::line(img2_show, cv::Point2f(p_ref[0], p_ref[1]), cv::Point2f(p_cur[0], p_cur[1]),cv::Scalar(0, 250, 0));}}cv::imshow("current", img2_show);cv::waitKey();
}void JacobianAccumulator::accumulate_jacobian(const cv::Range &range) {// parametersconst int half_patch_size = 1;int cnt_good = 0;Matrix6d hessian = Matrix6d::Zero();Vector6d bias = Vector6d::Zero();double cost_tmp = 0;for (size_t i = range.start; i < range.end; i++) {// compute the projection in the second imageEigen::Vector3d point_ref =depth_ref[i] * Eigen::Vector3d((px_ref[i][0] - cx) / fx, (px_ref[i][1] - cy) / fy, 1);Eigen::Vector3d point_cur = T21 * point_ref;if (point_cur[2] < 0)   // depth invalidcontinue;float u = fx * point_cur[0] / point_cur[2] + cx, v = fy * point_cur[1] / point_cur[2] + cy;if (u < half_patch_size || u > img2.cols - half_patch_size || v < half_patch_size ||v > img2.rows - half_patch_size)continue;projection[i] = Eigen::Vector2d(u, v);double X = point_cur[0], Y = point_cur[1], Z = point_cur[2],Z2 = Z * Z, Z_inv = 1.0 / Z, Z2_inv = Z_inv * Z_inv;cnt_good++;// and compute error and jacobianfor (int x = -half_patch_size; x <= half_patch_size; x++)for (int y = -half_patch_size; y <= half_patch_size; y++) {double error = GetPixelValue(img1, px_ref[i][0] + x, px_ref[i][1] + y) -GetPixelValue(img2, u + x, v + y);Matrix26d J_pixel_xi;Eigen::Vector2d J_img_pixel;J_pixel_xi(0, 0) = fx * Z_inv;J_pixel_xi(0, 1) = 0;J_pixel_xi(0, 2) = -fx * X * Z2_inv;J_pixel_xi(0, 3) = -fx * X * Y * Z2_inv;J_pixel_xi(0, 4) = fx + fx * X * X * Z2_inv;J_pixel_xi(0, 5) = -fx * Y * Z_inv;J_pixel_xi(1, 0) = 0;J_pixel_xi(1, 1) = fy * Z_inv;J_pixel_xi(1, 2) = -fy * Y * Z2_inv;J_pixel_xi(1, 3) = -fy - fy * Y * Y * Z2_inv;J_pixel_xi(1, 4) = fy * X * Y * Z2_inv;J_pixel_xi(1, 5) = fy * X * Z_inv;J_img_pixel = Eigen::Vector2d(0.5 * (GetPixelValue(img2, u + 1 + x, v + y) - GetPixelValue(img2, u - 1 + x, v + y)),0.5 * (GetPixelValue(img2, u + x, v + 1 + y) - GetPixelValue(img2, u + x, v - 1 + y)));// total jacobianVector6d J = -1.0 * (J_img_pixel.transpose() * J_pixel_xi).transpose();hessian += J * J.transpose();bias += -error * J;cost_tmp += error * error;}}if (cnt_good) {// set hessian, bias and costunique_lock<mutex> lck(hessian_mutex);H += hessian;b += bias;cost += cost_tmp / cnt_good;}
}void DirectPoseEstimationMultiLayer(const cv::Mat &img1,const cv::Mat &img2,const VecVector2d &px_ref,const vector<double> depth_ref,Sophus::SE3 &T21) {// parametersint pyramids = 4;double pyramid_scale = 0.5;double scales[] = {1.0, 0.5, 0.25, 0.125};// create pyramidsvector<cv::Mat> pyr1, pyr2; // image pyramidsfor (int i = 0; i < pyramids; i++) {if (i == 0) {pyr1.push_back(img1);pyr2.push_back(img2);} else {cv::Mat img1_pyr, img2_pyr;cv::resize(pyr1[i - 1], img1_pyr,cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));cv::resize(pyr2[i - 1], img2_pyr,cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));pyr1.push_back(img1_pyr);pyr2.push_back(img2_pyr);}}double fxG = fx, fyG = fy, cxG = cx, cyG = cy;  // backup the old valuesfor (int level = pyramids - 1; level >= 0; level--) {VecVector2d px_ref_pyr; // set the keypoints in this pyramid levelfor (auto &px: px_ref) {px_ref_pyr.push_back(scales[level] * px);}// scale fx, fy, cx, cy in different pyramid levelsfx = fxG * scales[level];fy = fyG * scales[level];cx = cxG * scales[level];cy = cyG * scales[level];DirectPoseEstimationSingleLayer(pyr1[level], pyr2[level], px_ref_pyr, depth_ref, T21);}}

8.5.4 直接法的优缺点

优点:
1、省去计算特征点、描述子的时间
2、只要求有像素梯度,不需要特征点,可 在特征缺失的场合使用。
3、可以构建 半稠密 乃至 稠密的地图

缺点:
1、图像 强烈非凸。优化算法易进入极小,只有运动很小时直接法才能成功。金字塔的引入可以在一定程度上减小非凸的影响。
2、单个像素无区分度 ——> 图像块 or 相关性。500个点以上
3、强假设: 灰度值不变。 ——> 同时估计相机的曝光参数

在这里插入图片描述

习题 8

在这里插入图片描述

√ 题1 光流方法

1、除了LK光流,还有哪些光流方法?它们各有什么特点?

在这里插入图片描述

文档

稠密光流:
在这里插入图片描述
DIS(Dense Inverse Search,稠密逆搜索)光流算法:【低时间复杂度+有竞争力的精度
DIS光流算法。这个类实现了密集逆搜索(DIS)光流算法。包括三个预设,带有预选参数,在速度和质量之间提供合理的权衡。但是,即使是最慢的预设也还是比较快的,如果你需要更好的质量,不关心速度,可以使用DeepFlow。
Till Kroeger, Radu Timofte, Dengxin Dai, and Luc Van Gool. Fast optical flow using dense inverse search. In Proceedings of the European Conference on Computer Vision (ECCV), 2016.
三部分:

  1. inverse search for patch correspondences;
  2. dense displacement field creation through patch aggregation along multiple scales; 多尺度斑块聚集 形成 密集位移场;
  3. variational refinement.

——————————
cv::FarnebackOpticalFlow
使用Gunnar Farneback算法计算密集光流。

  • Two-Frame Motion Estimation Based on
    Polynomial Expansion

——————————
基于鲁棒局部光流(RLOF,robust local optical flow)算法和稀疏到密集插值方案的快速密集光流计算
有相应的稀疏 API
在这里插入图片描述

——————————
“Dual TV L1” Optical Flow Algorithm.
在这里插入图片描述
C. Zach, T. Pock and H. Bischof, “A Duality Based Approach for Realtime TV-L1 Optical Flow”. Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. “TV-L1 Optical Flow Estimation”.
在这里插入图片描述

——————————
基于翘曲理论的高精度光流估计:角误差更小,对参数变化不敏感,噪声鲁棒】Thomas Brox, Andres Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy optical flow estimation based on a theory for warping. In Computer Vision-ECCV 2004, pages 25–36. Springer, 2004.
将一个连续的、旋转不变的能量泛函,用于光流计算,该泛函基于两个项:一个具有亮度常数和梯度常数假设的鲁棒数据项,结合一个保持不连续的时空 TV 正则化器。
在这里插入图片描述
cv::VariationalRefinement::calcUV()

稀疏光流
在这里插入图片描述

该类可以使用金字塔迭代Lucas-Kanade方法计算稀疏特征集的光流。

题2

2、 在本节程序的求图像梯度过程中,我们简单地求了 u + 1 u+1 u+1 u − 1 u-1 u1 的灰度之差除以 2,作为 u u u 方向上的梯度值。这种做法有什么缺点?提示:对于距离较近的特征,变化应该较快;而距离较远的特征在图像中变化较慢,求梯度时能否利用此信息?

题3

3、直接法是否能和光流一样,提出“反向法”的概念?即,使用原始图像的梯度代替目标图像的梯度?

题4

4、使用Ceres或g2o实现稀疏直接法和半稠密直接法。

题5

单目直接法:在优化时 把 像素深度 也作为优化变量
在这里插入图片描述

在这里插入图片描述

http://www.hengruixuexiao.com/news/46750.html

相关文章:

  • go语言 做网站提高百度搜索排名工具
  • 专业服务网站建设企业推广公司
  • 网站建设柒金手指花总14百度惠生活怎么优化排名
  • 中企动力做网站多久能好专业培训心得体会
  • 北京响应式网站建设山东服务好的seo
  • 云虚拟主机建设网站一定要域名seo优化查询
  • 网站首页为什么不收录如何让百度收录
  • 长春星宿网站建设公司怎么样seo外链建设的方法有
  • 建设电影推荐网站的项目背景百度应用市场下载安装
  • 毕设做网站些什么比较简单百度一下 你就知道官方
  • 欢迎回来请牢记网站域名搜索百度一下
  • 网站定制报价表seo网站排名
  • 如何建网站教程视频宁波seo在线优化哪家好
  • 买实体服务器做网站黑帽seo技术论坛
  • 体育网站的制作哪里可以做互联网最赚钱的行业
  • 赣州网站建设联系方式推广普通话手抄报内容资料
  • 网站的首页需要什么内容世界杯比分查询
  • 网站的数据库丢失西安网站seo排名优化
  • 集团公司网站案例我想做百度推广
  • 网站代码是多少求职seo
  • 做网站用小公司还是大公司长沙网络公关公司
  • 乌兰察布建设局网站怎样在百度上做广告
  • 网站的页面结构seo排名培训公司
  • 河北移动端网站建设最有效的推广方式
  • 生成图片的软件seo常用方法
  • 北京市房山建设培训学校网站网络营销管理
  • 上海网站优化在线生成html网页
  • 做俄罗斯外贸的网站设计网站seo策划
  • 儿童摄影网站模板竞价推广开户公司
  • 一家只做直购的网站微信广告朋友圈投放