当前位置: 首页 > news >正文

iis如何做网站网站制作软件免费下载

iis如何做网站,网站制作软件免费下载,网络架构和现实架构的差异,晋城网络公司做网站的文章目录 差分和累加积分多重积分 Python科学计算:数组💯数据生成 差分和累加 微积分是现代科学最基础的数学工具,但其应用对象往往是连续函数,而其在非连续函数的类比,便是差分与累加。在【numpy】中,可…

文章目录

    • 差分和累加
    • 积分
    • 多重积分

Python科学计算:数组💯数据生成

差分和累加

微积分是现代科学最基础的数学工具,但其应用对象往往是连续函数,而其在非连续函数的类比,便是差分与累加。在【numpy】中,可通过【diff】和【cumsum】来完成这两项任务。

y = sin ⁡ 2 x y=\sin 2x y=sin2x为例,其导数为 d y d x = 2 cos ⁡ x \frac{\text dy}{\text dx}=2\cos x dxdy=2cosx,积分则为 ∫ y d x = − 1 2 cos ⁡ 2 x + C \int y\text dx=-\frac{1}{2}\cos 2x+C ydx=21cos2x+C C C C是某个常数。这三个函数的曲线分别为

在这里插入图片描述

绘图函数如下

import matplotlib.pyplot as plt
import numpy as np
dx = 0.1
x = np.arange(100)*dx
y = np.sin(2*x)
plt.plot(x, y, label="y=sin(2x)")
plt.plot(x[1:], np.diff(y)/dx, label="diff(y)/dx")
plt.plot(x, np.cumsum(y)*dx, label="cumsum(y)*dx")plt.grid()
plt.legend()
plt.show()

其中,diff用于求差分,其输入参数除了待差分数组之外,还有n和axis,比较常用,n为差分的阶数,默认为1;axis用于高维数组中,表示计算的方向,默认-1表示最后一个轴。

cumsum用于累加,对于输入数组 y y y,其返回数组为 S S S,则 S n = ∑ i = 0 n y i S_n=\sum_{i=0}^ny_i Sn=i=0nyi

无论diff还是cumsum,均只针对输入数组进行操作,而不会考虑微积分中至关重要的 d x \text dx dx,所以绘图时对这一部分进行了补全。

此外,由于差分的实质是后一个减去前一个,所以元素个数必然会减少,所以在绘图时,令 x x x从1开始。这是一个在编程时很容易出错的地方,故而numpy还提供了另一个函数【ediff1d】,这是一个只做一阶差分计算的函数,但提供了to_endto_begin参数,分别用于在diff计算结果的后面或前面补充数值。

积分

积分一开始被引入教材,是以梯形求和为示例的:将函数 y = f ( x ) y=f(x) y=f(x)无限分割,然后对相邻两点取平均,再乘以 d x \text dx dx之后进行求和,即 lim ⁡ δ x → 0 ∑ y i + y i + 1 2 δ x \lim_{\delta_x\to0}\sum \frac{y_{i}+y_{i+1}}{2}\delta_x limδx02yi+yi+1δx

【trapz】可实现上述过程,但要求 y y y是一个给定的数组,且 δ x \delta_x δx为1。很显然,这个过程只能称之为梯形求和,毕竟积分的要求是 δ x → 0 \delta_x\to0 δx0 1 1 1 0 0 0有着本质的区别。

为此,【scipy.intergrate】作为顾名思义的积分模块,提供了真真正正的积分。为了行文简洁,后文将此模块简称为【si】模块。

【quad】是【si】中最常用的积分函数,以函数 x 2 x^2 x2 sin ⁡ x \sin x sinx为例,其使用流程如下

import numpy as np
from scipy.integrate import quadfunc = lambda x: x**2
quad(func, 0, 4)        # (21.33, 2.37-13)
quad(np.sin, 0, np.pi)  # (2.0, 2.22e-14)

其中,quad共输入了三个参数,分别是待积分函数、积分下界与积分上界,其返回值有二,分别为积分结果和计算误差。

这两个测试函数的解析形式如下,可见计算结果基本温和。

∫ 0 4 x 2 d x = 1 3 x 3 ∣ 0 4 = 64 3 ≈ 21.3 ∫ 0 π sin ⁡ x d x = − cos ⁡ x ∣ 0 π = 2 \int_0^4 x^2\text dx=\frac{1}{3}x^3\big|^4_0=\frac{64}{3}\approx 21.3\\ \int^\pi_0\sin x\text dx=-\cos x\big|^\pi_0=2 04x2dx=31x3 04=36421.30πsinxdx=cosx 0π=2

除了三个必须输入的参数之外,下列参数也较为常用

  • argsfunc函数中,除待求积分参数之外的其他参数,默认为空
  • epsabs, epsrel 分别为绝对和相对误差,默认为 1.49 × 1 0 − 8 1.49\times10^{-8} 1.49×108
  • limit 自适应算法中子区间的个数,默认50
  • points 断点位置,默认为None
  • weight, wvar 定义域区间内的权重类型和权重,默认为None
  • wopts, maxp1 切比雪夫矩及其上限,默认为None和50
  • full_output=0, limlst=50, complex_func=False

其中,weightwvar参数的具体取值如下。

weightwvar函数
“cos” w w w cos ⁡ w x \cos wx coswx
“sin” w w w sin ⁡ w x \sin wx sinwx
“alg” α , β \alpha, \beta α,β g ( x ) g(x) g(x)
“alg-loga” α , β \alpha, \beta α,β g ( x ) log ⁡ ( x − a ) g(x)\log(x-a) g(x)log(xa)
“alg-logb” α , β \alpha, \beta α,β g ( x ) log ⁡ ( b − x ) g(x)\log(b-x) g(x)log(bx)
“alg-log” α , β \alpha, \beta α,β g ( x ) log ⁡ ( x − a ) log ⁡ ( b − x ) g(x)\log(x-a)\log(b-x) g(x)log(xa)log(bx)
“cauchy” c c c 1 x − c \frac{1}{x-c} xc1

其中, g ( x ) = ( x − a ) α ∗ ( b − x ) β g(x)=(x-a)^\alpha*(b-x)^\beta g(x)=(xa)α(bx)β

func f ( x ) = x f(x)=x f(x)=x,若weight参数为cos,而wvar取值为 w w w,则实际计算的积分表达式为

∫ a b cos ⁡ w f ( x ) d x \int_a^b\cos wf(x)\text dx abcoswf(x)dx

示例如下

func = lambda x : x
quad(func, 0, np.pi)    # (4.935, 5.478e-14)
quad(func, 0, np.pi, weight='cos', wvar=1)  # (-2.00, 1.926e-13)

多重积分

在【si】中,除了quad之外,还提供了二重、三重以及N重积分的API,分别是【dblquad, tplquad, nquad】,三者所需参数如下

MIN = 1.49e-08
dblquad(func, a, b, gfun, hfun, args=(), epsabs=MIN, epsrel=MIN)
tplquad(func, a, b, gfun, hfun, qfun, rfun, args=(), epsabs=MIN, epsrel=MIN)
nquad(func, ranges, args=None, opts=None, full_output=False)

dblquad

以二重积分为例,其对应的问题可表述为下式

∫ a b ∫ y g ( x ) y h ( x ) f ( y , x ) d x d y \int^b_a\int^{y_h(x)}_{y_g(x)} f(y,x)\text dx\text dy abyg(x)yh(x)f(y,x)dxdy

在函数dblquad中,func对应 f ( y , x ) f(y,x) f(y,x),a,b对那个上式的 a , b a,b a,b,gfun, hfun对应上式的 y g ( x ) , y h ( x ) y_g(x), y_h(x) yg(x),yh(x)

接下来求解下面的积分

∫ 1 2 ∫ x 2 x 3 x y d y d x = ∫ 1 2 1 2 ( x y 2 ) ∣ x 2 x 3 d x = ∫ 1 2 1 2 ( x 7 − x 5 ) d x = 1 2 ( 1 8 x 8 − 1 6 x 6 ) ∣ 1 2 = 1 2 ( 2 8 8 − 2 6 6 ) + 1 48 = 513 48 \begin{aligned} &\int^2_1\int^{x^3}_{x^2} xy\text dy\text dx\\ =&\int^2_1 \frac{1}{2}(xy^2)\vert^{x^3}_{x^2}\text dx=&\int^2_1 \frac{1}{2}(x^7-x^5)\text dx\\ =&\frac1 2(\frac1 8x^8-\frac1 6x^6)\vert^2_1=&\frac1 2(\frac{2^8}{8}-\frac{2^6}{6})+\frac{1}{48}\\ =&\frac{513}{48} \end{aligned} ===12x2x3xydydx1221(xy2)x2x3dx=21(81x861x6)12=485131221(x7x5)dx21(828626)+481

Python代码如下

from scipy.integrate import dblquad
func = lambda x,y : x*y
gf = lambda x: x**2
hf = lambda x: x**3
dblquad(func, 1, 2, gf, hf)
# (10.6875, 5.284867210146833e-13)

计算结果与 513 48 \frac{513}{48} 48513一致。

与二重积分相比,三重积分tplquad只是多了一组qfun和rfun,相当于z处于qfun(x,y)和rfun(x,y)之间。

【nquad】貌似不支持回调函数,其参数ranges是元组的列表,每个元组代表对应未知量的取值范围。若将其映射为三重积分函数,则ranges可表示为 ( ( a 1 , b 1 ) , ( a 2 , b 2 ) , ⋯ , ( a n , b n ) ) ((a_1,b_1), (a_2, b_2),\cdots,(a_n, b_n)) ((a1,b1),(a2,b2),,(an,bn))

下面仍以函数func为例,用nquad得出结果

from scipy.integrate import nquad
nquad(func, [[1,2], [3, 4]])
#(0.39276170758930756, 4.91851540406507e-15)
http://www.hengruixuexiao.com/news/45036.html

相关文章:

  • 鸡西各个网站友链购买网
  • 广西住房与城乡建设厅网站电话广东疫情中高风险地区最新名单
  • 东莞营销商城网站建设广告代运营
  • 全网营销型网站建设营销网站类型
  • 罗阳网站建设西安seo包年服务
  • 做网站用的编程工具网站建设规划书
  • 域名过期网站还有用吗广告关键词排名
  • 网站能需要怎么做才不会被攻击网站推广策划方案
  • 怎样做电影网站做直销去哪里找客户
  • 站长工具乱码google谷歌搜索主页
  • 卖普洱茶做网站互联网营销师培训多少钱
  • 发泡机 东莞网站建设近期的新闻热点
  • 无忧中英繁企业网站系统 破解微信营销
  • 越南的网站建设学it学费大概多少钱
  • 网站的页脚什么做广告公司简介
  • 架子鼓谱那个网站做的好b2b网站有哪些平台
  • 五大建设hyein seo是什么牌子
  • 顺德人做多上哪个网站友情链接购买平台
  • 旅游网站建设的利益百度惠生活怎么做推广
  • 服务器创建多个网站江门百度seo公司
  • 小程序模板购买湖南专业关键词优化
  • 网站建设与软件开发哪个好赚钱百度指数人群画像哪里查询
  • 企业官网网站建设咨询郑州seo关键词
  • 长春做企业网站全球搜索引擎排名
  • 网站速度优化工具网络营销课程作业
  • 长沙柒零叁网站建设互联网营销做什么
  • 哪个网站课件做的比较好企业培训课程视频
  • 郴州市宜章网站建设公司网站模版
  • 男女做姿抽插视频网站外链发布网站
  • 档案局网站的建设关键词统计工具有哪些