当前位置: 首页 > news >正文

机关网站建设建议软文推广案例500字

机关网站建设建议,软文推广案例500字,网站正在建设中的图片素材,新公司取名字大全免费一、什么是Flink 1. Flink是一个开源的分布式,高性能,高可用,准确的流处理框架 (1)分布式:表示flink程序可以运行在很多台机器上, (2)高性能:表示Flink处理性…

一、什么是Flink

1. Flink是一个开源的分布式,高性能,高可用,准确的流处理框架

(1)分布式:表示flink程序可以运行在很多台机器上,
(2)高性能:表示Flink处理性能比较高
(3)高可用:表示flink的稳定性和可用性是比较好的。
(4)准确的:表示flink可以保证处理数据的准确性。

2. Flink支持流(Stream)处理和批处理(Batch)

其实对于flink而言,它是一个流处理框架,批处理只是流处理的一个极限特例而已。

 

  • 左边是数据源,从这里面可以看出来,这些数据是实时产生的一些日志,或者是数据库、文件系统、kv存储系统中的数据。
  • 中间是Flink,负责对数据进行处理。
  • 右边是目的地,Flink可以将计算好的数据输出到其它应用中,或者存储系统中。

 二、Flink架构图

  • 首先图片最下面表示是flink的一些部署模式,支持local,和集群(standalone,yarn),也支持在云上部署。
  • 往上一层是flink的核心,分布式的流处理引擎。
  • 再往上面是flink的API和类库。主要有两大块API,DataStram API和DataSet API,分别做流处理和批处理。
  • 针对DataStram API这块,支持复杂事件处理,和table操作,其实也是支持SQL操作的。针对DatasetAPI 这块,支持flinkML机器学习,Gelly图计算,table操作,这块也是支持SQL操作的。

        其实从这可以看出来,Flink也是有自己的生态圈的,里面包含了实时计算、离线计算、机器学习、图计算、Table和SQL计算等等。所以说它和Spark还是有点像的,不过它们两个的底层计算引擎是有本质区别的,一会我们会详细分析。

三、Flink三大核心组件

Flink包含三大核心组件:

  • Data Source,数据源(负责接收数据),
  • Transformations 算子(负责对数据进行处理)
  • Data Sink 输出组件(负责把计算好的数据输出到其它存储介质中)

 四、Flink的流处理与批处理

1. 在大数据处理领域,批处理和流处理一般被认为是两种不同的任务,一个大数据框架一般会被设计为只能处理其中一种任务。

        例如Storm只支持流处理任务,而MapReduce、Spark只支持批处理任务。Spark Streaming是Spark之上支持流处理任务的子系统,看似是一个特例,其实并不是——Spark Streaming采用了一种micro-batch的架构,就是把输入的数据流切分成细粒度的batch,并为每一个batch提交一个批处理的Spark任务,所以Spark Streaming本质上执行的还是批处理任务,和Storm这种流式的数据处理方式是完全不同的。

2.Flink通过灵活的执行引擎,能够同时支持批处理和流处理。在执行引擎这一层,流处理系统与批处理系统最大的不同在于节点之间的数据传输方式。

         (1)对于一个流处理系统,其节点间数据传输的标准模型是:当一条数据被处理完成后,序列化到缓存中,然后立刻通过网络传输到下一个节点,由下一个节点继续处理,这就是典型的一条一条处理。

        (2)而对于一个批处理系统,其节点间数据传输的标准模型是:当一条数据被处理完成后,序列化到缓存中,并不会立刻通过网络传输到下一个节点,当缓存写满的时候,就持久化到本地硬盘上,当所有数据都被处理完成后,才开始将处理后的数据通过网络传输到下一个节点。

        (3)这两种数据传输模式是两个极端,对应的是流处理系统对低延迟的要求和批处理系统对高吞吐量的要求。Flink的执行引擎采用了一种十分灵活的方式,同时支持了这两种数据传输模型
Flink以固定的缓存块为单位进行网络数据传输,用户可以通过缓存块超时值指定缓存块的传输时机。如果缓存块的超时值为0,则Flink的数据传输方式类似前面所说的流处理系统的标准模型,此时系统可以获得最低的处理延迟,如果缓存块的超时值为无限大,则Flink的数据传输方式类似前面所说的批处理系统的标准模型,此时系统可以获得最高的吞吐量,这样就比较灵活了,其实底层还是流式计算模型,批处理只是一个极限特例而已。

3. 三种数据传输模型

第一个:一条一条处理
第二个:一批一批处理
第三个:按照缓存块进行处理,缓存块可以无限小,也可以无限大,这样就可以同时支持流处理和批处理
了。

五、Storm vs SparkStreaming vs Flink

 

解释:

  • Native:表示来一条数据处理一条数据
  • Mirco-Batch:表示划分小批,一小批一小批的处理数据
  • 组合式:表示是基础API,例如实现一个求和操作都需要写代码实现,比较麻烦,代码量会比较多。
  • 声明式:表示提供的是封装后的高阶函数,例如filter、count等函数,可以直接使用,比较方便,代码量比较少。

六、实时计算框架如何选择

1:需要关注流数据是否需要进行状态管理
2:消息语义是否有特殊要求At-least-once或者Exectly-once
3:小型独立的项目,需要低延迟的场景,建议使用Storm
4:如果项目中已经使用了Spark,并且秒级别的实时处理可以满足需求,建议使用SparkStreaming
5:要求消息语义为Exectly-once,数据量较大,要求高吞吐低延迟,需要进行状态管理,建议选择Flink

http://www.hengruixuexiao.com/news/43888.html

相关文章:

  • 国外设计网站h开头东莞seo建站公司
  • 哈尔滨网站搜索优化公司最新网域查询入口
  • 七牛云上市给你一个网站怎么优化
  • 偃师网站制作互联网广告投放
  • 朝阳网站建设公司南宁百度快速优化
  • 西安做企业网站手机优化大师官方免费下载
  • 幼儿园主题网络图设计美丽鹭岛搜索引擎优化seo多少钱
  • 电器网站建设目的全网网站推广
  • 网站制作框架网络搭建是干什么的
  • 哈尔滨手机建站模板网站流量统计分析工具
  • app开发和网站开发新闻发稿公司
  • 郑州做网站hnmaorui朋友圈推广文案
  • 昆明php网站建设网络营销的作用和意义
  • 电脑怎么做网站电商运营培训机构哪家好
  • 怎么给自己的网站做模版沈阳网站建设制作公司
  • wix建站教程营销推广手段有什么
  • 设计网站注意哪些问题流量平台有哪些
  • 网站建设 html5视频营销的策略与方法
  • 软件测试网站开发与测试唐山公司做网站
  • 网站图片标题背景怎样做的seo网络推广经理
  • 做深度的互联网站免费推广论坛
  • python做的网站有什么漏洞培训教育机构
  • 性做爰网站今日广州新闻最新消息
  • 郑州做商城网站微商怎么引流被加精准粉
  • 制作网站的公司(深圳)新人跑业务怎么找客户
  • 大石桥网站制作学网络运营需要多少钱
  • 网站不收录友链申请
  • php版本不同于wordpress使用网站seo应用
  • 怎么做免费公司网站专业网络推广
  • 学做网站论坛全部视频厦门seo外包公司