当前位置: 首页 > news >正文

手机软件开发培训seo

手机软件开发,培训seo,鹤壁网站建设兼职,莆田做外贸网站【Pytroch】基于支持向量机算法的数据分类预测(Excel可直接替换数据) 1.模型原理2.数学公式3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果 1.模型原理 支持向量机(Support Vector Machine,SVM)是一种强大的监…

【Pytroch】基于支持向量机算法的数据分类预测(Excel可直接替换数据)

  • 1.模型原理
  • 2.数学公式
  • 3.文件结构
  • 4.Excel数据
  • 5.下载地址
  • 6.完整代码
  • 7.运行结果

1.模型原理

支持向量机(Support Vector Machine,SVM)是一种强大的监督学习算法,用于二分类和多分类问题。它的主要思想是找到一个最优的超平面,可以在特征空间中将不同类别的数据点分隔开。

下面是使用PyTorch实现支持向量机算法的基本步骤和原理:

  1. 数据准备: 首先,你需要准备你的训练数据。每个数据点应该具有特征(Feature)和对应的标签(Label)。特征是用于描述数据点的属性,标签是数据点所属的类别。

  2. 数据预处理: 根据SVM的原理,数据点需要线性可分。因此,你可能需要进行一些数据预处理,如特征缩放或标准化,以确保数据线性可分。

  3. 定义模型: 在PyTorch中,你可以定义一个支持向量机模型作为一个线性模型,例如使用nn.Linear

  4. 定义损失函数: SVM的目标是最大化支持向量到超平面的距离,即最大化间隔(Margin)。这可以通过最小化损失函数来实现,通常使用hinge loss(合页损失)。PyTorch提供了nn.MultiMarginLoss损失函数,它可以用于SVM训练。

  5. 定义优化器: 选择一个优化器,如torch.optim.SGD,来更新模型的参数以最小化损失函数。

  6. 训练模型: 使用训练数据对模型进行训练。在每个训练步骤中,计算损失并通过优化器更新模型参数。

  7. 预测: 训练完成后,你可以使用训练好的模型对新的数据点进行分类预测。对于二分类问题,可以使用模型的输出值来判断数据点所属的类别。

2.数学公式

当使用支持向量机(SVM)进行数据分类预测时,目标是找到一个超平面(或者在高维空间中是一个超曲面),可以将不同类别的数据点有效地分隔开。以下是SVM的数学原理:

  1. 超平面方程: 在二维情况下,超平面可以表示为

    w 1 x 1 + w 2 x 2 + b = 0 w_1 x_1 + w_2 x_2 + b = 0 w1x1+w2x2+b=0

  2. 决策函数: 数据点 (x) 被分为两个类别的决策函数为

    f ( x ) = w T x + b f(x) = w^T x + b f(x)=wTx+b

  3. 间隔(Margin): 对于一个给定的超平面,数据点到超平面的距离被称为间隔。支持向量机的目标是找到能最大化间隔的超平面。间隔可以用下面的公式计算:

    间隔 = 2 ∥ w ∥ \text{间隔} = \frac{2}{\|w\|} 间隔=w2

  4. 支持向量: 支持向量是离超平面最近的那些数据点。这些点对于确定超平面的位置和间隔非常重要。支持向量到超平面的距离等于间隔。

  5. 最大化间隔: SVM 的目标是找到一个超平面,使得所有支持向量到该超平面的距离(即间隔)都最大化。这等价于最小化法向量的范数 (|w|),即:

    最小化 1 2 ∥ w ∥ 2 \text{最小化} \quad \frac{1}{2}\|w\|^2 最小化21w2

  6. 对偶问题和核函数: 对偶问题的解决方法涉及到拉格朗日乘子,可以得到一个关于训练数据点的内积的表达式。这样,如果直接在高维空间中计算内积是非常昂贵的,可以使用核函数来避免高维空间的计算。核函数将数据映射到更高维的空间,并在计算内积时使用高维空间的投影,从而实现了在高维空间中的计算,但在计算上却更加高效。

总之,SVM利用线性超平面来分隔不同类别的数据点,通过最大化支持向量到超平面的距离来实现分类。对偶问题和核函数使SVM能够处理非线性问题,并在高维空间中进行计算。以上是SVM的基本数学原理。

3.文件结构

在这里插入图片描述

iris.xlsx						% 可替换数据集
Main.py							% 主函数

4.Excel数据

在这里插入图片描述

5.下载地址

- 资源下载地址

6.完整代码

import torch
import torch.nn as nn
import pandas as pd
import numpy as np  # Don't forget to import numpy for the functions using it
import matplotlib.pyplot as plt  # Import matplotlib for plotting
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrixclass SVM(nn.Module):def __init__(self, input_size, num_classes):super(SVM, self).__init__()self.linear = nn.Linear(input_size, num_classes)def forward(self, x):return self.linear(x)def train(model, X, y, num_epochs, learning_rate):criterion = nn.CrossEntropyLoss()  # Use CrossEntropyLoss for multi-class classificationoptimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)for epoch in range(num_epochs):inputs = torch.tensor(X, dtype=torch.float32)labels = torch.tensor(y, dtype=torch.long)  # Use long for class indicesoptimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')def test(model, X, y):inputs = torch.tensor(X, dtype=torch.float32)labels = torch.tensor(y, dtype=torch.long)  # Use long for class indiceswith torch.no_grad():outputs = model(inputs)_, predicted = torch.max(outputs, 1)accuracy = (predicted == labels).float().mean()print(f'Accuracy on test set: {accuracy:.2f}')# Define the plot functions
def plot_confusion_matrix(conf_matrix, classes):plt.figure(figsize=(8, 6))plt.imshow(conf_matrix, cmap=plt.cm.Blues, interpolation='nearest')plt.title("Confusion Matrix")plt.colorbar()tick_marks = np.arange(len(classes))plt.xticks(tick_marks, classes)plt.yticks(tick_marks, classes)plt.xlabel("Predicted Label")plt.ylabel("True Label")plt.tight_layout()plt.show()def plot_predictions_vs_true(y_true, y_pred):plt.figure(figsize=(10, 6))plt.plot(y_true, 'go', label='True Labels')plt.plot(y_pred, 'rx', label='Predicted Labels')plt.title("True Labels vs Predicted Labels")plt.xlabel("Sample Index")plt.ylabel("Class Label")plt.legend()plt.show()def main():data = pd.read_excel('iris.xlsx')X = data.iloc[:, :-1].valuesy = data.iloc[:, -1].valueslabel_encoder = LabelEncoder()y = label_encoder.fit_transform(y)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)num_classes = len(label_encoder.classes_)model = SVM(X_train.shape[1], num_classes)num_epochs = 1000learning_rate = 0.001train(model, X_train, y_train, num_epochs, learning_rate)# Call the test function to get predictionsinputs = torch.tensor(X_test, dtype=torch.float32)labels = torch.tensor(y_test, dtype=torch.long)with torch.no_grad():outputs = model(inputs)_, predicted = torch.max(outputs, 1)# Convert torch tensors back to numpy arraysy_true = labels.numpy()y_pred = predicted.numpy()test(model, X_test, y_test)# Call the plot functionsconf_matrix = confusion_matrix(y_true, y_pred)plot_confusion_matrix(conf_matrix, label_encoder.classes_)plot_predictions_vs_true(y_true, y_pred)if __name__ == '__main__':main()

7.运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

http://www.hengruixuexiao.com/news/43837.html

相关文章:

  • 怎么在外贸公司拿订单搜索关键词排名优化
  • 17网站一起做网店河北新乡网站优化公司
  • 淄博网站建设hiddd水平优化
  • 网站制作自己做服务器合肥优化营商环境
  • 哪些网站免费做职业测评网络营销10大平台
  • 淘宝网站建设手机版网络推广平台哪家公司最好
  • 苍南县规划建设局网站湖南竞价优化哪家好
  • 丹徒网站建设怎么样今日头条官方正版
  • 做网站接私活流程seo新人培训班
  • 网站托管解决方案网站推广是什么
  • maka做的营销小视频能否发布到网站上app搜索优化
  • 网站开发 百度编辑器公司怎么做网络营销
  • 石门网站建设竞价网站
  • 虚拟机做网站有用吗重庆今日头条新闻消息
  • 游戏公司有哪些网站是否含有seo收录功能
  • 代做预算网站网络建站公司
  • 手机网站制作公司 广州怎么做网络销售
  • WordPress防止机器注册青岛网站建设方案优化
  • 免费的网站代码seo企业顾问
  • 中铁三局招聘是什么梗百度seo关键词报价
  • 北京 代理前置审批 网站备案网站制作公司怎么样
  • 网站开发 百度编辑器昆明网站seo优化
  • 江北关键词优化排名seowin10优化大师好用吗
  • 无锡地区做网站新闻稿在线
  • 江阴响应式网站建设搜索电影免费观看播放
  • 赤峰网站开发red网站设计案例
  • 做视频网站有什么论文收录网站有哪些
  • 网站怎么做json数据广州seo服务外包
  • 网站毕业论文模板优化设计五年级上册语文答案
  • 如何外贸seo网站建设教育培训机构网站