当前位置: 首页 > news >正文

做张网站banner多少钱seo同行网站

做张网站banner多少钱,seo同行网站,什么网店可以免费开店,电子商务网站建设移动电商开发1.简介 LangChain是一个开源的框架,它提供了构建基于大模型的AI应用所需的模块和工具。它可以帮助开发者轻松地与大型语言模型(LLM)集成,实现文本生成、问答、翻译、对话等任务。LangChain的出现大大降低了AI应用开发的门槛,使得任何人都可以…

在这里插入图片描述

1.简介

LangChain是一个开源的框架,它提供了构建基于大模型的AI应用所需的模块和工具。它可以帮助开发者轻松地与大型语言模型(LLM)集成,实现文本生成、问答、翻译、对话等任务。LangChain的出现大大降低了AI应用开发的门槛,使得任何人都可以基于LLM构建自己的创意应用。本文将介绍基于Golang使用LangChain相关模块。
项目地址:https://github.com/tmc/langchaingo

2.核心模块

llm调用

func demo(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-3.5-turbo"),openai.WithBaseURL("https://api.openai-proxy.com/v1"),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}completion, err := llms.GenerateFromSinglePrompt(ctx,llm,"hello world!",llms.WithTemperature(0),)if err != nil {log.Fatal(err)}fmt.Println(completion)
}

prompt模板

  • 简单使用
func promptTemplate(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-3.5-turbo"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}prompt := prompts.PromptTemplate{Template:       "你是一个文本翻译员,请将```括起来的原始文本转化为{{.lang}}。原始文本```{{.text}}```",InputVariables: []string{"text"},PartialVariables: map[string]any{"lang": "英语",},TemplateFormat: prompts.TemplateFormatGoTemplate,}result, err := prompt.Format(map[string]any{"text": "我是中国人",})if err != nil {log.Fatal(err)}fmt.Println(result)result, err = llm.Call(ctx, result)if err != nil {log.Fatal(err)}fmt.Println(result)
}
  • 带输出格式化
func promptWithRoleJSON(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-4o"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}messages := []llms.MessageContent{llms.TextParts(llms.ChatMessageTypeSystem, "你是一个英文翻译员,需要将<>括起来的英文翻译为中文,用JSON格式输出:原始文本、翻译文本"),llms.TextParts(llms.ChatMessageTypeHuman, "<hello world>"),}content, err := llm.GenerateContent(ctx, messages, llms.WithJSONMode())if err != nil {log.Fatal(err)}fmt.Println(content.Choices[0].Content)
}

上下文记忆

func conversationMemory(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-4o"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}//memoryBuffer := memory.NewConversationBuffer()memoryBuffer := memory.NewConversationWindowBuffer(10)//memoryBuffer := memory.NewConversationTokenBuffer(llm, 1024)chatChain := chains.NewConversation(llm, memoryBuffer)messages := []string{"你好,我叫PBR","你知道我叫什么吗?","你可以解决什么问题?",}for _, message := range messages {completion, err := chains.Run(ctx, chatChain, message)for {if err == nil {break}time.Sleep(30 * time.Second)completion, err = chains.Run(ctx, chatChain, message)}chatMessages, _ := memoryBuffer.ChatHistory.Messages(ctx)fmt.Printf("上下文对话历史:%v\n", json.SafeDump(chatMessages))fmt.Printf("输入:%v\n输出:%v\n", message, completion)}
}

模型链

func llmChains(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-4o"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}// 单个输入prompt := prompts.NewPromptTemplate(`将"""括起来中文翻译为英文输出输入中文:"""{{.text}}"""输出结果中只需要有英文翻译,不要有其他字符`,[]string{"text"})llmChain := chains.NewLLMChain(llm, prompt)out, err := chains.Run(ctx, llmChain, "langchain是一款不错的llm脚手架")if err != nil {log.Fatal(err)}fmt.Println(out)// 多个输入translatePrompt := prompts.NewPromptTemplate("Translate the following text from {{.inputLanguage}} to {{.outputLanguage}}. {{.text}}",[]string{"inputLanguage", "outputLanguage", "text"},)llmChain = chains.NewLLMChain(llm, translatePrompt)// Otherwise the call function must be used.outputValues, err := chains.Call(ctx, llmChain, map[string]any{"inputLanguage":  "English","outputLanguage": "Chinese","text":           "I love programming.",})if err != nil {log.Fatal(err)}out, ok := outputValues[llmChain.OutputKey].(string)if !ok {log.Fatal(err)}fmt.Println(out)
}

顺序链

unc sequenceChains(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-4o"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}// 将输入翻译为特定语言chain1 := chains.NewLLMChain(llm,prompts.NewPromptTemplate("请将输入的原始文本:{{.originText}}翻译为{{.language}},直接输出翻译文本",[]string{"originText", "language"}))chain1.OutputKey = "transText"// 总结翻译后的文本概要chain2 := chains.NewLLMChain(llm, prompts.NewPromptTemplate("请将输入的原始文本:<{{.transText}}>总结50字以内概要文本。严格使用JSON序列化输出结果,不要带有```json序列化标识。其中originText为原始文本,summaryText为概要文本",[]string{"transText"}))chain2.OutputKey = "summary_json"chain, err := chains.NewSequentialChain([]chains.Chain{chain1, chain2}, []string{"originText", "language"}, []string{"summary_json"})if err != nil {log.Fatal(err)}resp, err := chain.Call(ctx, map[string]any{"originText": "langchain is a good llm frameworks","language":   "中文",})if err != nil {log.Fatal(err)}for key, value := range resp {fmt.Printf("key = %v | value = %v\n", key, value)}
}

向量生成

func embeddingCreate(ctx context.Context) {// embedding生成测试llm, err := openai.New(openai.WithEmbeddingModel("text-embedding-ada-002"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}vectors, err := llm.CreateEmbedding(ctx, []string{"chatgpt-3.5"})if err != nil {log.Fatal(err)}fmt.Println(vectors)
}

RAG

  • RAG:检索增强生成,分为向量创建、向量存储、向量召回应用
func embeddingRag(ctx context.Context) {// embedding生成测试llm, err := openai.New(openai.WithEmbeddingModel("text-embedding-ada-002"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}// 创建embedderopenAiEmbedder, err := embeddings.NewEmbedder(llm)if err != nil {log.Fatal(err)}// 基于redis存储向量redisStore, err := redisvector.New(ctx,redisvector.WithConnectionURL(conf.LLMHubConfig.Redis.Url),redisvector.WithIndexName("test_vector_idx", true),redisvector.WithEmbedder(openAiEmbedder),)if err != nil {log.Fatalln(err)}// 插入测试数据data := []schema.Document{{PageContent: "狸花猫", Metadata: nil},{PageContent: "金渐层猫", Metadata: nil},{PageContent: "松狮犬", Metadata: nil},}_, err = redisStore.AddDocuments(ctx, data)if err != nil {log.Fatalln(err)}docs, err := redisStore.SimilaritySearch(ctx, "猫", 3,vectorstores.WithScoreThreshold(0.5),)fmt.Println(docs)// 将vector检索接入chains中result, err := chains.Run(ctx,chains.NewRetrievalQAFromLLM(llm,vectorstores.ToRetriever(redisStore, 3, vectorstores.WithScoreThreshold(0.8)),),"有哪些猫?",)fmt.Println(result)
}

Agent

  • Agent = LLM + Memory + Tools
  • 已集成工具使用
func agent_math_and_search(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-3.5-turbo"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}wikiTool := wikipedia.New("test")agentTools := []tools.Tool{tools.Calculator{},wikiTool,}agent := agents.NewOneShotAgent(llm, agentTools)executor := agents.NewExecutor(agent,agentTools,agents.WithCallbacksHandler(callbacks.LogHandler{}),)// 计算result, err := chains.Run(ctx, executor, "计算1024除以2并加1024的结果")if err != nil {log.Fatal(err)}fmt.Println(result)// 搜索result, err = chains.Run(ctx, executor, "今天的日期以及中国在去年今天发生了什么大事")if err != nil {log.Fatal(err)}fmt.Println(result)
}
  • 自定义工具
type randomNumberTool struct{}func (r randomNumberTool) Name() string {return "随机数计算工具"
}func (r randomNumberTool) Description() string {return "用于获取随机数"
}func (r randomNumberTool) Call(ctx context.Context, input string) (string, error) {return "1024", nil
}func agent_diy(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-3.5-turbo"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}agentTools := []tools.Tool{randomNumberTool{},}agent := agents.NewOneShotAgent(llm, agentTools)executor := agents.NewExecutor(agent,agentTools,agents.WithCallbacksHandler(callbacks.LogHandler{}),)result, err := chains.Run(ctx, executor, "告诉我一个随机数")if err != nil {log.Fatal(err)}fmt.Println(result)
}
http://www.hengruixuexiao.com/news/38379.html

相关文章:

  • 常熟专业做网站西地那非片能延时多久
  • 网站建设原因分析google推广seo
  • wordpress显示分类目录优化设计方法
  • 什么网站可以做ppt模板企业网站开发
  • 专门做房地产设计的图片网站滨州seo招聘
  • 陕西建设官方网站常州seo建站
  • 知识产权网站模板百度热搜榜小说排名
  • 常州做网站企业十大免费网站推广入口
  • 陈铭生生日深圳网络优化推广公司
  • 舞钢做网站首页关键词怎么排名靠前
  • 制作网站要求如何建立网站平台
  • 怎么在电脑找到wordpress模板代码seoyoon
  • 免费网站服务器2020手机百度助手
  • 商会网站的建设seo排名查询
  • 做阿里云网站信息流广告加盟代理
  • 模板网站外贸建站百度seo如何做
  • 运用asp做购物网站的心得中国营销网
  • 幼儿园班级网站的建设与管理百度舆情
  • nba网站建设的意义独立站seo
  • 企业宣传文案模板郑州seo关键词优化公司
  • 莱芜雪野湖风景区门票多少钱西安seo专员
  • 素米高端品牌网站建设疫情最新资讯
  • 微信微网站建设平台长沙seo网站优化
  • 大连手机自适应网站制作价格软文代写发布网络
  • 如何规避电子政务网站建设教训武汉seo优化公司
  • 有没有什么推荐的网站友情链接查询工具
  • 制作一个学校门户网站长沙网络科技有限公司
  • 做网站主机几个配件搜索引擎推广是什么意思
  • 一个人 建设网站廊坊seo关键词优化
  • 公司做网站哪里好双11销售数据