当前位置: 首页 > news >正文

可信网站多少钱今日西安头条最新消息

可信网站多少钱,今日西安头条最新消息,做网站可以用.cn域名吗,网站建设与维护面试目录 一、词嵌入层 二、循环网络层 2.1 RNN网络原理 2.2 Pytorch RNN API 自然语言处理(Nature language Processing,NLP)研究的主要是通过计算机算法来理解自然语言。对于自然语言来说,处理的数据主要就是人类的语言&#xf…

目录

一、词嵌入层

二、循环网络层

2.1 RNN网络原理

2.2 Pytorch RNN API


自然语言处理(Nature language Processing,NLP)研究的主要是通过计算机算法来理解自然语言。对于自然语言来说,处理的数据主要就是人类的语言,如:汉语、英语、法语等。该类型的数据不像前面接触的过的结构化数据、或者图像数据可以很方便的进行数值化

一、词嵌入层

在进行文本数据处理时,需要将文本进行数据值化,然后进行后续的训练工作。词嵌入层的作用就是将文本转换为向量的

词嵌入层首先会根据输入的词的数量构建一个词向量矩阵。如:有 100 个词,每个词希望转换成 128 维度的向量,那么构建的矩阵形状即为100 * 128,输入的每个词都对应了矩阵中的一个向量

在 PyTorch 中,可以使用 nn.Embedding 词嵌入层来实现输入词的向量化

  1. 先将语料进行分词,构建词与索引的映射,可以将这个映射称为词表,词表中每个词都对应了一个唯一的索引
  2. 然后使用 nn.Embedding 构建词嵌入矩阵,词索引对应的向量即为该词对应的数值化后的向量表示

nn.Embedding 对象构建时,最主要有两个参数:

  1. num_embeddings 表示词的数量
  2. embedding_dim 表示用多少维的向量来表示每个词
import torch
import torch.nn as nn
import jiebadef main():text = '北京冬奥的进度条已经过半,不少外国运动员在完成自己的比赛后踏上归途。'# 1. 分词words = jieba.lcut(text)print('words:', words)# 2. 构建词表index_to_word = {}word_to_index = {}# 分词去重unique_words = list(set(words))for idx, word in enumerate(unique_words):index_to_word[idx] = wordword_to_index[word] = idx# 3.构建词嵌入层# num_embeddings为词的数量,embedding_dim为词嵌入的维度embedding = nn.Embedding(num_embeddings=len(index_to_word), embedding_dim=4)# 4.文本转为词向量表示for word in words:idx = word_to_index[word]word_vector = embedding(torch.tensor(idx))print('%3s\t' % word, word_vector)if __name__ == "__main__":main()
words: ['北京', '冬奥', '的', '进度条', '已经', '过半', ',', '不少', '外国', '运动员', '在', '完成', '自己', '的', '比赛', '后', '踏上', '归途', '。']北京    tensor([1.1339, 1.1262, 0.6638, 1.5691], grad_fn=<EmbeddingBackward0>)冬奥    tensor([0.2753, 0.3262, 1.7691, 1.2225], grad_fn=<EmbeddingBackward0>)的     tensor([-0.7507,  1.8850,  1.4340, -0.8074], grad_fn=<EmbeddingBackward0>)
进度条   tensor([ 0.5693, -0.0951, -0.4607,  0.0555], grad_fn=<EmbeddingBackward0>)已经    tensor([-0.5726,  0.0812,  1.1051, -0.0020], grad_fn=<EmbeddingBackward0>)过半    tensor([0.0691, 0.1430, 1.9346, 1.4653], grad_fn=<EmbeddingBackward0>),     tensor([-1.1009,  0.7833, -0.9021,  1.8811], grad_fn=<EmbeddingBackward0>)不少    tensor([ 0.7913,  0.0890, -0.7459,  1.1473], grad_fn=<EmbeddingBackward0>)外国    tensor([-0.6079,  0.2563,  0.8344, -0.5977], grad_fn=<EmbeddingBackward0>)
运动员   tensor([-1.9587,  0.0995, -1.0728, -0.2779], grad_fn=<EmbeddingBackward0>)在     tensor([-1.6571, -1.2508, -0.8138, -2.6821], grad_fn=<EmbeddingBackward0>)完成    tensor([-1.4124, -0.5624,  1.2548,  0.1708], grad_fn=<EmbeddingBackward0>)自己    tensor([-2.5485, -0.1839, -0.0079,  0.1326], grad_fn=<EmbeddingBackward0>)的     tensor([-0.7507,  1.8850,  1.4340, -0.8074], grad_fn=<EmbeddingBackward0>)比赛    tensor([ 0.3826, -1.8883,  0.5677,  0.1951], grad_fn=<EmbeddingBackward0>)后     tensor([ 0.2585, -1.2181,  1.0165, -0.4775], grad_fn=<EmbeddingBackward0>)踏上    tensor([-1.6933,  1.2826,  0.9993, -0.2306], grad_fn=<EmbeddingBackward0>)归途    tensor([ 3.8709,  0.5133,  0.1683, -0.9699], grad_fn=<EmbeddingBackward0>)。     tensor([-0.9352, -1.2663, -1.5860, -0.2301], grad_fn=<EmbeddingBackward0>)

词嵌入层默认使用的是均值为 0,标准差为 1 的正态分布进行初始化,也可以理解为是随机初始化。这个用来表示词的文本真的能够表达出词的含义吗?

nn.Embedding 中对每个词的向量表示都是随机生成的,当一个词输入进来后,会使用随机产生的向量来表示该词。该词向量参与到下游任务的计算,下游任务计算后,会和目标结果进行对比产生损失。接下来,通过反向传播更新所有的网络参数,就包括了 nn.Embedding 中的词向量表示。这样通过反复的前向计算、反向传播、参数更新,最终每个词的向量表示就会变得更合理

二、循环网络层

文本数据是具有序列特性的。如:"我爱你",这串文本就是具有序列关系的,"爱" 需要在 "我" 之后,"你" 需要在 "爱" 之后,若颠倒了顺序,那么可能就会表达不同的意思

为了能够表示出数据的序列关系需要使用循环神经网络(Recurrent Nearal Networks,RNN) 来对数据进行建模,RNN 是一个具有记忆功能的网络,作用于处理带有序列特点的样本数据

2.1 RNN网络原理

上图中 h 表示隐藏状态,每一次的输入都会有包含两个值:上一个时间步的隐藏状态、当前状态的输入值,输出当前时间步的隐藏状态

上图中,为了更加容易理解,画了 3 个神经元, 但是实际上只有一个神经元,"我爱你" 三个字是重复输入到同一个神经元中的

举例

假设要实现文本生成,也就是输入"我爱" 这两个字,来预测出"你",其如下图所示:

将上图展开成不同时间步的形式,如下图所示:

首先初始化出第一个隐藏状态,一般都是全0的一个向量,然后将 "我" 进行词嵌入,转换为向量的表示形式,送入到第一个时间步,然后输出隐藏状态 h1,然后将 h1 和 "爱" 输入到第二个时间步,得到隐藏状态 h2,将 h2 送入到全连接网络,得到 "你" 的预测概率

循环网络网络可以有多个神经元

依次将 "你爱我" 三个字分别送入到每个神经元进行计算,假设词嵌入时 "你爱我" 的维度为 128,经过循环网络 "你爱我" 三个字的词向量维度就会变成 4。循环神经网络的的神经元个数会影响到输出的数据维度

神经元内部如何计算?

  1. W_{ih} 表示输入数据的权重
  2. b_{ih} 表示输入数据的偏置
  3. W_{hh} 表示输入隐藏状态的权重
  4. b_{hh} 表示输入隐藏状态的偏置

最后对输出的结果使用 tanh 激活函数进行计算,得到该神经元的输出

2.2 Pytorch RNN API

RNN 层输入的数据为三个维度:(seq_len,batch_size,input_size)

import torch
import torch.nn as nn# 输入单个数据
def test01():# seq_len, batch_size, input_sizeinputs = torch.randn(1, 1, 128)# 隐藏层 num_layers, batch_size, hidden_sizehn = torch.zeros(1, 1, 256)# input_size 输入词向量的维度# hidden_size 隐藏层的大小, 隐藏层的神经元个数, 影响最终输出结果的维度rnn = nn.RNN(input_size=128, hidden_size=256)outputs, hn = rnn(inputs, hn)print("outputs shape", outputs.shape)# outputs shape torch.Size([1, 1, 256])print("hidden shape", hn.shape)# hidden shape torch.Size([1, 1, 256])# 输入句子
def test02():# seq_len, batch_size, input_sizeinputs = torch.randn(8, 1, 128)hn = torch.zeros(1, 1, 256)rnn = nn.RNN(input_size=128, hidden_size=256)outputs, hn = rnn(inputs, hn)print("outputs shape", outputs.shape)# outputs shape torch.Size([8, 1, 256])print("hidden shape", hn.shape)# hidden shape torch.Size([1, 1, 256])# 输入批量数据
def test03():# seq_len, batch_size, input_sizeinputs = torch.randn(8, 32, 128)hn = torch.zeros(1, 32, 256)rnn = nn.RNN(input_size=128, hidden_size=256)outputs, hn = rnn(inputs, hn)print("outputs shape", outputs.shape)# outputs shape torch.Size([8, 32, 256])print("hidden shape", hn.shape)# hidden shape torch.Size([1, 32, 256])if __name__ == "__main__":# test01()# test02()test03()

http://www.hengruixuexiao.com/news/33875.html

相关文章:

  • 做天猫网站设计难吗营销推广的工具有哪些
  • 怎么做网站的301百度实时热点排行榜
  • 做购物网站小图标关键词推广和定向推广
  • 郑州做网站制作的公司站长之家网站模板
  • 多用户自助建站系统企业网站优化
  • 大连城乡住房建设厅网站免费的外贸网站推广方法
  • 网页入口网站推广拼多多代运营收费标准
  • python做网站好用吗指数型基金
  • 宝塔网站做301重定向有什么平台可以发广告
  • 做个网站多少钱一年深圳推广服务
  • 手机网站css写法seo零基础视频教程
  • 合肥建站软件百度app下载官方免费最新版
  • 宁波人流网百度关键词优化软件如何
  • 做医院网站公司电商培训班一般多少钱
  • 网站上资源截图怎么做全媒体运营师培训机构
  • seo入门免费教程拼多多seo搜索优化
  • 网站建设类公司不受国内限制的搜索引擎
  • wordpress做网盘资源google推广seo
  • 局政务网站建设管理工作总结免费建立个人网站
  • 白日梦怎么做的网站优化大师win10能用吗
  • 网站弹屏广告怎么做的找客户资源的软件免费的
  • 站长之家点击进入深圳seo网站优化公司
  • 北京做网站个人网站alexa排名查询
  • 建设企业银行官网徐州seo顾问
  • 深圳龙岗网站建设公司软文兼职
  • 邹城手机网站建设沈阳关键词推广
  • wordpress linux 安装seo营销软件
  • 外贸网站怎么做促销口碑营销策划方案
  • 做日本的网站好卖的东西seo网站优化培训厂家报价
  • 男女生做羞羞事情的网站水果店推广营销方案