当前位置: 首页 > news >正文

中信建设有限责任公司国内区事业部招聘杭州网站关键词排名优化

中信建设有限责任公司国内区事业部招聘,杭州网站关键词排名优化,怎么做网站维护宣传,洛阳网站开发公司Hive引擎包括:默认MR、Tez、Spark 不更换引擎hive默认的就是MR。 MapReduce:是一种编程模型,用于大规模数据集(大于1TB)的并行运算。 Hive on Spark:Hive既作为存储元数据又负责SQL的解析优化&#xff0…

Hive引擎包括:默认MR、Tez、Spark

不更换引擎hive默认的就是MR。

MapReduce:是一种编程模型,用于大规模数据集(大于1TB)的并行运算。

Hive on Spark:Hive既作为存储元数据又负责SQL的解析优化,语法是HQL语法,执行引擎变成了Spark,Spark负责采用RDD执行。

Spark on Hive

就是通过sparksql,加载hive的配置文件,获取到hive的元数据信息,spark sql获取到hive的元数据信息之后就可以拿到hive的所有表的数据,接下来就可以通过spark sql来操作hive表中的数据

Hive on Spark效率要低于Spark on Hive

前者只有计算引擎是Spark,前期解析,转换,优化等步骤都是Hive完成。

后者只有元数据用了Hive,对SQL的解析,转换,优化等都是Spark完成。

Tez

Tez是Apache开源的支持DAG作业的计算框架,它直接源于MapReduce框架,核心思想是将Map和Reduce两个操作进一步拆分,即Map被拆分成Input、Processor、Sort、Merge和Output, Reduce被拆分成Input、Shuffle、Sort、Merge、Processor和Output等,这样,这些分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业

Spark

Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。

Tez和Mapreduce区别

核心思想:MapReduce将一个算法抽象成Map和Reduce两个阶段进行处理;Tez将Map和Reduce两个操作进一步拆分,即Map被拆分成Input、Processor、Sort、Merge和Output, Reduce被拆分成Input、Shuffle、Sort、Merge、Processor和Output等依赖DAG:Mapreduce没有DAG一说,Tez将map和reduce阶段拆分成多个阶段,分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业落地磁盘:MapReduce会有多次落地磁盘;Tez可以将多个有依赖的作业转换为一个作业,这样只需写一次HDFS,且中间节点较少。

Tez和Spark区别

使用场景:spark更像是一个通用的计算引擎,提供内存计算,实时流处理,机器学习等多种计算方式,适合迭代计算;tez作为一个框架工具,特定为hive和pig提供批量计算运行模式:spark属于内存计算,支持多种运行模式,可以跑在standalone,yarn上;而tez只能跑在yarn上;虽然spark与yarn兼容,但是spark不适合和其他yarn应用跑在一起资源利用:tez能够及时的释放资源,重用container,节省调度时间,对内存的资源要求率不高; 而spark如果存在迭代计算时,container一直占用资源;

mr引擎在hive 2中将被弃用。官方推荐使用tez或spark等引擎。

冲突

在hive sql中使用了union 或 join操作

tez会将任务切分,每个小任务,同一个HDFS分区目录下会创建一个文件文件夹,这就会造成一个非常严重的问题,假如这张表的下文,使用这张表没有用tez,而是使用spark或者mr,这两种引擎是不会遍历子文件夹下的内容的。查出来的数据为0。而我们很难约束,其他人使用同一种引擎,

所以tez在使用中抛弃。我们最中选择了spark引擎。

MapReduce: 是一种离线计算框架,将一个算法抽象成Map和Reduce两个阶段进行处理,每个阶段都是用键值对(key/value)作为输入和输出,非常适合数据密集型计算。Map/Reduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性地返回它所完成的工作和最新的状态。如果一个节点在设定的时间内没有进行心跳上报,主节点(可以理解为主服务器)就会认为这个节点down掉了,此时就会把分配给这个节点的数据发到别的节点上运算,这样可以保证系统的高可用性和稳定性。因此它是一个很好的计算框架。

TEZ:是基于Hadoop YARN之上的DAG(有向无环图,Directed Acyclic Graph)计算框架。核心思想是将Map和Reduce两个操作进一步拆分,即Map被拆分成Input、Processor、Sort、Merge和Output, Reduce被拆分成Input、Shuffle、Sort、Merge、Processor和Output等。这样,这些分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业,从而可以减少Map/Reduce之间的文件存储,同时合理组合其子过程,也可以减少任务的运行时间。

Spark:Hive on Spark总体的设计思路是,尽可能重用Hive逻辑层面的功能;从生成物理计划开始,提供一整套针对Spark的实现,比如 SparkCompiler、SparkTask等,这样Hive的查询就可以作为Spark的任务来执行了

单从引擎的执行效率来说:Spark > TEZ > MapReduce

MR

计算,会对磁盘进行多次的读写操作,这样启动多轮job的代价略有些大,不仅占用资源,更耗费大量的时间 

TEZ

计算,就会生成一个简洁的DAG作业,算子跑完不退出,下轮继续使用上一轮的算子,这样大大减少磁盘IO操作,从而计算速度更快。 TEZ比MR至少快5倍(约值,反正是快,不必较真0.0) 

Spark

计算,DAG生成,Stage划分,比MR快10倍(约值,反正是快,不必较真0.0)与TEZ相比我选择Spark,一来快,二来奇葩问题比较少

http://www.hengruixuexiao.com/news/31778.html

相关文章:

  • 跟京东类似的网站百度百家号
  • 个人空间网站建设网络推广工具和方法
  • 网页设计与网站开发试题答案合肥网站优化方案
  • 手机网站幻灯片代码最近发生的重大新闻
  • 金融网站如何做设计十大营销策略有哪些
  • 东湖网站建设seo网上培训多少钱
  • 比价网站怎么做的黄页网站推广app咋做广告
  • 网站备案名称必须是公司名最知名的网站推广公司
  • wordpress 媒体库 地址班级优化大师头像
  • 做产品推广的网站有哪些广州seo优化排名公司
  • 自动优化网站建设热线手机优化游戏性能的软件
  • 湖北专业网站建设质量保障产品策划方案怎么做
  • 查二级建造师个人信息查询seo在线优化排名
  • 怎么做像天猫类似的网站百度广告平台
  • 企业网站开发心得体会百度电脑版网页版入口
  • 邹城网站开发公关公司一般收费标准
  • WordPress搭建流媒体网站线上推广网络公司
  • 建设一个能看视频的网站国外搜索引擎网站
  • 苏州营销型网站建设方案西安网站seo厂家
  • 公众号开发专业seo研究学院
  • 国内较好的网站开发商城营销推广方案案例
  • 市政府网站建设工作情况汇报360推广怎么收费
  • 免费手机网站制作app免费做网站自助建站
  • 合伙做网站在哪个平台做推广比较好
  • wordpress全站ajax插件seo经验
  • 室内设计公司排名一览表google关键词排名优化
  • 株洲网站建设百度站长收录提交入口
  • 做网站开发电脑配置如何交换友情链接
  • html简单网页代码图片百度推广优化师
  • wordpress 上传图片大小郑州纯手工seo