当前位置: 首页 > news >正文

广州官网优化快优吧seo优化

广州官网优化,快优吧seo优化,惠州网络问政平台,购物分享网站怎么做盈利目录 一、排序的概念 二、插入排序 1、直接插入排序 直接插入排序的特性总结: 2、希尔排序 希尔排序的特性总结: 三、选择排序 1、直接选择排序 时间复杂度 2、堆排序—排升序(建大堆) 向下调整函数 堆排序函数 代码完整版: …

目录

一、排序的概念

二、插入排序  

1、直接插入排序 

直接插入排序的特性总结:

2、希尔排序

希尔排序的特性总结:

 三、选择排序

1、直接选择排序 

时间复杂度

2、堆排序—排升序(建大堆)

向下调整函数

堆排序函数

代码完整版: 

 头文件

 函数文件

 测试文件


一、排序的概念

排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

 

二、插入排序  

比如,在实际中我们玩扑克牌时,就用了插入排序的思想

1、直接插入排序 

直接插入排序是一种简单的排序算法,它的基本思想是将一个记录插入到已经排序好的有序表中,从而得到一个新的、记录数增加1的有序表。这个算法适用于少量数据的排序,是稳定的排序方法,即相等的元素的顺序不会改变。

直接插入排序的算法过程如下:

  1. 从第一个元素开始,该元素可以认为已经被排序;
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  5. 将新元素插入到该位置后;
  6. 重复步骤2~5。

如果我们将这个过程比作扑克牌的排序,每次我们都是从牌堆中拿出一张牌,然后将它插入到左手中正确的位置,最终左手中的牌都是排序好的。

 我们来看一下代码的运行过程:

void InsertSort(int* a, int n)
{for (int i = 0; i < n - 1; i++) {int end = i;int tmp = a[i + 1];while (end >= 0) {if (a[end] > tmp) {a[end + 1] = a[end];end--;}else {break;}}a[end + 1] = tmp;}
}
  • 函数参数:指针a接收数组,n接收数组元素个数。
  • 首先,外层循环从第一个元素开始遍历到倒数第二个元素,因为在内层循环中需要比较当前元素和前一个元素的大小,所以最后一个元素不需要再比较。
  • 在外层循环中,我们将当前元素的下一个元素作为待插入元素,将当前元素的下标保存在变量end中,这个变量表示当前元素在已排序部分中的位置。
  • 接下来while循环中,我们在已排序部分从后往前遍历,比较当前元素和已排序部分中的元素大小,如果当前元素小于已排序部分中的元素,则将已排序部分中的元素后移一位,直到找到当前元素的正确位置。
  • 最后,我们将待插入元素插入到正确的位置,即end+1的位置。
  • 内层循环结束后,当前元素已经被插入到了正确的位置,我们继续外层循环,处理下一个元素,直到所有元素都被插入到正确的位置。

直接插入排序的特性总结:

1. 元素集合越接近有序,直接插入排序算法的时间效率越高
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1),它是一种稳定的排序算法
4. 稳定性:稳定

2、希尔排序

 希尔排序(Shell Sort)是一种改进的插入排序算法,它的基本思想是将待排序的序列分成若干个子序列,对每个子序列进行插入排序,然后再将整个序列进行一次插入排序。通过这种方式,可以使得序列中较小的元素尽可能地快速地移动到前面,从而减少了插入排序的比较次数和移动次数,提高了排序的效率。

希尔排序的算法过程如下:

  1. 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  2. 按增量序列个数k,对序列进行k趟排序;
  3. 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m的子序列,分别对每个子序列进行插入排序;
  4. 将各个子序列中的排序结果合并成一个序列。

代码如下:

void ShellSort(int* a, int n)
{//1、gap >  1 预排序//2、gap == 1 直接插入排序int gap = n;while (gap > 1) {gap = gap / 3 + 1;// +1可以保证最后一次一定是1for (int i = 0; i < n - gap; i++) {int end = i;int tmp = a[end + gap];while (end >= 0) {if (a[end] > tmp) {a[end + gap] = a[end];end -= gap;}else {break;}}a[end + gap] = tmp;}}
}
  • 首先,我们选择一个增量gap=n,然后将序列分成若干个子序列,对每个子序列进行插入排序。
  • 在这个实现中,我们使用了一个while循环来计算增量gap,每次将gap除以3并加1,保证gap最小为1,此时进行直接插入排序。
  • 在外层while循环中,我们将序列分成若干个子序列,每个子序列的长度为gap。然后,我们对每个子序列进行插入排序,将子序列中的元素插入到已排序部分的正确位置。
  • 在内层循环中,我们使用了一个变量end来表示当前元素的下标,每次将end减去gap,直到找到当前元素的正确位置。然后,我们将待插入元素插入到正确的位置,即end+gap的位置。

  • 内层循环结束后,当前子序列已经排好序了,我们继续外层while循环,处理下一个子序列,直到所有子序列都被排好序了。

 以数组 a = [9, 8, 7, 6, 5, 4, 3, 3, 2, 1, 0],长度 n = 11为例,演示排序过程

图中颜色相同的值为当前<间距gap>下的子序列,从前往后依次比较每个子序列(也就是相距 gap 个位置的值的大小)。

希尔排序的特性总结:

  1. 希尔排序是对直接插入排序的优化。
  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
  3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些书中给出的希尔排序的时间复杂度都不固定,但我们只需记住结论:O(N^ 1.3),复杂的推导和计算过程不需要了解。

 三、选择排序

1、直接选择排序 

直接选择排序通过每一轮的比较,找到最大值和最小值,将最大值的节点跟右边交换,最小值节点跟左边交换,达到排升序的效果。

我们先看代码,然后通过一个例子就能明白了。 

void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}void SelectSort(int* a, int n)
{int begin = 0, end = n - 1;while (begin < end){int maxi = begin, mini = begin;for (int i = begin; i <= end; i++){if (a[i] > a[maxi]){maxi = i;}if (a[i] < a[mini]){mini = i;}}Swap(&a[begin], &a[mini]);// 如果maxi和begin重叠,修正一下即可if (begin == maxi){maxi = mini;}Swap(&a[end], &a[maxi]);++begin;--end;}
}
  • 代码中的变量begin和end分别表示当前未排序的元素范围的起始和结束位置。
  • 在while循环中,每次从begin到end的范围内找到最大和最小的元素,分别用maxi和mini记录它们的下标。
  • 然后将mini所指向的元素与begin所指向的元素交换位置,将maxi所指向的元素与end所指向的元素交换位置。
  • 如果maxi和begin重叠,说明mini所指向的元素是当前未排序元素中最大的,需要将maxi更新为mini。
  • 最后,begin指针向后移动一位,end指针向前移动一位,继续进行下一轮排序。 

我们来用一个简单的例子演示一下这个选择排序算法的过程。

假设我们有一个数组`a`,它的元素为:[5, 3, 8, 6, 4, 2],我们要对它进行排序。

首先,begin指向第一个元素,end指向最后一个元素:

begin = 0
end = 5

接下来,我们进入主循环,因为`begin`小于`end`,所以我们需要继续排序。在第一轮排序中,我们需要找到未排序部分的最大值和最小值。

首先,我们将`maxi`和`mini`都初始化为`begin`,也就是第一个元素的索引。然后,我们遍历未排序部分的元素,找到最大值和最小值的索引。在这个例子中,最大值的索引是2,最小值的索引是5。

maxi = 2
mini = 5

接下来,我们将未排序部分的最小值交换到开始位置,将未排序部分的最大值交换到结束位置。这时,数组的状态变为:[2, 3, 4, 6, 8, 5]

由于我们已经将当前范围的最大值和最小值放到了正确的位置,所以我们将`begin`向后移动一位,将`end`向前移动一位,继续进行下一轮排序。此时,`begin`指向第二个元素,`end`指向倒数第二个元素:

begin = 1
end = 4

在第二轮排序中,我们需要找到未排序部分的最大值和最小值。这时,最大值的索引是3,最小值的索引是1。

maxi = 3
mini = 1

接下来,我们将未排序部分的最小值交换到开始位置,将未排序部分的最大值交换到结束位置。这时,数组的状态变为:[2, 3, 4, 5, 6, 8],所有元素都排序完成,排序结束。

时间复杂度

每一轮比较都需要遍历数组,查找最大最小值,第一轮遍历N个数据,第二轮是N-2个数据,第三轮N-4 …,遍历次数为:N+N-2+N-4+…+1,一个等差数列求和,所以总的时间复杂度为O(N^2)

2、堆排序—排升序(建大堆)

向下调整函数

void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}void AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (child + 1 < n && a[child + 1] > a[child])++child;if (a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}elsebreak;}
}
  • 通过传入参数获取到当前的左子节点的位置。
  • 当child位置小于数组元素个数时进行判断。
  • 进入循环,首先判断检查右子节点是否存在并且比左子节点的值,如果是,将 child 更新为右子节点的索引,以确保选择更小的子节点进行比较。
  • 比较选定的子节点的值与父节点的值,如果子节点的值大于父节点的值,就交换它们。
  • 更新parent为新的子节点位置,更新child为新的左子节点位置,然后继续比较和交换,直到不再需要交换为止。
  • 如果当前子节点不大于当前父节点则停止循环。

堆排序函数

// 排升序
void HeapSort(int* a, int n)
{// 建大堆for (int i = (n-1-1)/2; i >= 0; --i){AdjustDown(a, n, i);}int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);--end;}
}
  1.  在HeapSort函数中,第一个循环调用了AdjustDown函数,将待排序数组构建成了一个大堆。但是,这个大堆并不是完全有序的,只是满足了大堆的性质,即每个节点的值都大于或等于其左右子节点的值。因此,需要进行第二个while循环,将大堆中的元素依次取出,交换堆顶元素和数组末尾元素,并重新调整大堆,直到整个数组有序。
  2. 第二个while循环中,将堆顶元素与数组末尾元素交换,然后将剩余元素重新调整为大堆。这样,每次交换后,数组末尾的元素就是当前大堆中的大值,而剩余元素仍然满足大堆的性质。重复以上步骤,直到整个数组有序。

代码完整版: 

 头文件

#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>void PrintArray(int* a, int n);
void InsertSort(int* a, int n);
void ShellSort(int* a, int n);
void SelectSort(int* a, int n);
void HeapSort(int* a, int n);

 函数文件

#include "sort.h"void PrintArray(int* a, int n)
{for (int i = 0; i < n; i++) {printf("%d ", a[i]);}printf("\n");
}void InsertSort(int* a, int n)
{for (int i = 0; i < n - 1; i++) {int end = i;int tmp = a[i + 1];while (end >= 0) {if (a[end] > tmp) {a[end + 1] = a[end];end--;}else {break;}}a[end + 1] = tmp;}
}void ShellSort(int* a, int n)
{//1、gap >  1 预排序//2、gap == 1 直接插入排序int gap = n;while (gap > 1) {gap = gap / 3 + 1;// +1可以保证最后一次一定是1for (int i = 0; i < n - gap; i++) {int end = i;int tmp = a[end + gap];while (end >= 0) {if (a[end] > tmp) {a[end + gap] = a[end];end -= gap;}else {break;}}a[end + gap] = tmp;}}
}void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}void SelectSort(int* a, int n)
{int begin = 0, end = n - 1;while (begin < end){int maxi = begin, mini = begin;for (int i = begin; i <= end; i++){if (a[i] > a[maxi]){maxi = i;}if (a[i] < a[mini]){mini = i;}}Swap(&a[begin], &a[mini]);// 如果maxi和begin重叠,修正一下即可if (begin == maxi){maxi = mini;}Swap(&a[end], &a[maxi]);++begin;--end;}
}void AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n) {if (child + 1 < n && a[child + 1] > a[child]) {child++;}if (a[child] > a[parent]) {Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else {break;}}
}void HeapSort(int* a, int n)
{for (int i = (n - 1 - 1) / 2; i >= 0; --i) {AdjustDown(a, n, i);}int end = n - 1;while (end > 0) {Swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;}
}

 测试文件

#include"Sort.h"
#include<time.h>void TestInsertSort()
{//int a[] = { 4,7,1,9,3,4,5,8,3,2 };int a[] = { 4,7,1,9,3,6,5,8,3,2,0 };PrintArray(a, sizeof(a) / sizeof(int));InsertSort(a, sizeof(a) / sizeof(int));PrintArray(a, sizeof(a) / sizeof(int));
}void TestSelectSort()
{//int a[] = { 4,7,1,9,3,6,5,8,3,2,0 };int a[] = { 9,7,1,3,3,0,5,8,3,2,3 };PrintArray(a, sizeof(a) / sizeof(int));SelectSort(a, sizeof(a) / sizeof(int));PrintArray(a, sizeof(a) / sizeof(int));
}void TestHeapSort()
{int a[] = { 4,7,1,9,3,6,5,8,3,2,0 };PrintArray(a, sizeof(a) / sizeof(int));HeapSort(a, sizeof(a) / sizeof(int));PrintArray(a, sizeof(a) / sizeof(int));
}void TestOP()
{srand(time(0));const int N = 1000000;//运行时间较长可自行更改大小int* a1 = (int*)malloc(sizeof(int) * N);int* a2 = (int*)malloc(sizeof(int) * N);int* a3 = (int*)malloc(sizeof(int) * N);int* a4 = (int*)malloc(sizeof(int) * N);int* a5 = (int*)malloc(sizeof(int) * N);int* a6 = (int*)malloc(sizeof(int) * N);int* a7 = (int*)malloc(sizeof(int) * N);for (int i = 0; i < N; ++i){a1[i] = rand();a2[i] = a1[i];a3[i] = a1[i];a4[i] = a1[i];a5[i] = a1[i];a6[i] = a1[i];a7[i] = a1[i];}int begin1 = clock();InsertSort(a1, N);int end1 = clock();int begin2 = clock();ShellSort(a2, N);int end2 = clock();int begin3 = clock();SelectSort(a3, N);int end3 = clock();int begin4 = clock();HeapSort(a4, N);int end4 = clock();printf("InsertSort:%d\n", end1 - begin1);printf("ShellSort:%d\n",  end2 - begin2);printf("SelcetSort:%d\n", end3 - begin3);printf("HeapSort:%d\n",   end4 - begin4);free(a1);free(a2);free(a3);free(a4);free(a5);free(a6);free(a7);
}int main()
{//TestInsertSort();//TestShellSort();//TestSelectSort();//TestHeapSort();TestOP();return 0;
}

http://www.hengruixuexiao.com/news/31258.html

相关文章:

  • 广州十大网站建设鹤壁网络推广哪家好
  • wordpress创建数据库文件湖南seo优化价格
  • 企业营销网站开发建设专家百度广告竞价
  • 自己做网站出证书站长之家ip查询工具
  • 门户型网站建设百度指数下载app
  • 电商论坛网站模板关键词吉他谱
  • 合肥的网站建设州网络营销做得好的品牌
  • 公司网站建设怎么选择wordpress
  • 网站开发技术发展趋势百度关键字优化
  • 宁夏做网站好的公司推广赚钱项目
  • 怀化网站建设搜索引擎优化的实验结果分析
  • 做电商在什么网站吗2021国内最好用免费建站系统
  • ps做网站画布大小是多少电商平台排行榜
  • 做网站需完成的软件全国各城市感染高峰进度查询
  • 西安建站平台seo诊断的网络问题
  • 公司网站域名注册流程郑州seo外包阿亮
  • weex做网站百度下载正版
  • 网站建设内部链接扬州seo博客
  • scala做网站问卷调查网站
  • 网站制作效果好广告联盟赚钱app
  • 网站建设 前沿文章网页制作作业100例
  • 网站数据库 备份台州seo排名优化
  • 文化建设的重要性关键词优化一般收费价格
  • 做网站素材网seo关键词优化怎么做
  • wordpress英语转换成汉文抖音seo优化系统招商
  • 建设政府网站十强公司网站的收录情况怎么查
  • 网站如何做问卷调查报告网络视频营销策略有哪些
  • 易乐自助建站政府免费培训面点班
  • 自己做的网站用国外的空间怎么样滕州今日头条新闻
  • 刘强东自己做网站南宁最新消息今天