当前位置: 首页 > news >正文

网站出现wordpressit培训机构

网站出现wordpress,it培训机构,锦州市城市建设服务中心网站,地产公司网站建设目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.1.1 SIFT关键点检测 2.1.2 可视化函数 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接: PCL点云算法与项目实战案例汇总(长期更新&#…

目录

一、概述

1.1原理

1.2实现步骤

1.3应用场景

二、代码实现

2.1关键函数

2.1.1 SIFT关键点检测

2.1.2 可视化函数

2.2完整代码

三、实现效果


PCL点云算法汇总及实战案例汇总的目录地址链接:

PCL点云算法与项目实战案例汇总(长期更新)


一、概述

        3D-SIFT关键点检测是SIFT算法在三维点云中的扩展应用。与二维图像的SIFT类似,它通过尺度空间的构建和局部特征检测来提取点云的关键点。在三维点云中,SIFT可以通过计算每个点在Z方向的梯度,找到具有几何显著特征的关键点,适用于物体识别、特征匹配、点云配准等应用场景。

1.1原理

        SIFT(Scale-Invariant Feature Transform)算法通过建立图像的尺度空间来提取关键点。在三维点云中,我们可以通过分析Z轴方向的变化(梯度)来检测点云的关键点。其核心步骤包括:

  1. 尺度空间构建:通过不同尺度的高斯核卷积,构造尺度空间,使得算法能够在不同的尺度下检测关键点。最小尺度通过参数 min_scale 设置,尺度空间的层数和每个层次的尺度数量由 n_octaves n_scales_per_octave 控制。
  2. 关键点检测:通过对尺度空间的极值点检测来提取关键点,极值点通过比较邻域点在不同尺度下的响应得到。为了减少检测到的无效点,需要设置最小对比度 min_contrast,以过滤掉噪声。
  3. 梯度估计:利用Z方向的变化,估计点云中每个点的局部梯度,作为响应值。Z轴梯度用于构建响应函数,并检测局部极值。

参数解释

  • min_scale:最小尺度,控制高斯核的最小标准差。
  • n_octaves:尺度空间的层数。
  • n_scales_per_octave:每个层次的尺度数量。
  • min_contrast:最小对比度,用于过滤掉低响应值的点。

1.2实现步骤

  1. 加载点云数据。
  2. 初始化SIFT关键点提取器,设置所需的参数(如尺度、对比度等)。
  3. 通过SIFT算法提取点云中的关键点,并将结果转换为标准的XYZ点云格式。
  4. 可视化原始点云和提取的SIFT关键点。

1.3应用场景

  1. 三维物体识别:通过SIFT提取点云的关键点进行特征匹配和物体识别。
  2. 点云配准:利用关键点信息对不同视角的点云进行精确对齐。
  3. 特征提取:用于三维重建、机器人导航等领域中的特征提取和环境感知。

二、代码实现

2.1关键函数

2.1.1 SIFT关键点检测

void extractSIFTKeypoints(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::PointWithScale>::Ptr keypoints)
{// 设置SIFT算法参数const float min_scale = 0.001f;           // 设置尺度空间中最小尺度的标准偏差          const int n_octaves = 3;                  // 设置尺度空间层数,越小则特征点越多           const int n_scales_per_octave = 15;       // 设置尺度空间中计算的尺度个数const float min_contrast = 0.0001f;       // 设置限制关键点检测的阈值   // 创建SIFT关键点检测对象pcl::SIFTKeypoint<pcl::PointXYZ, pcl::PointWithScale> sift;sift.setInputCloud(cloud);                // 设置输入点云pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ> ());sift.setSearchMethod(tree);               // 设置KdTree搜索sift.setScales(min_scale, n_octaves, n_scales_per_octave); // 设置尺度范围sift.setMinimumContrast(min_contrast);    // 设置最小对比度// 执行SIFT关键点检测sift.compute(*keypoints);
}

2.1.2 可视化函数

void visualizeSIFTKeypoints(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints)
{boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("SIFT Keypoints Viewer"));int v1(0), v2(0);viewer->createViewPort(0, 0.0, 0.5, 1.0, v1);viewer->setBackgroundColor(1.0, 1.0, 1.0, v1); // 设置白色背景viewer->addText("Original Point Cloud", 10, 10, "v1_text", v1);viewer->createViewPort(0.5, 0.0, 1.0, 1.0, v2);viewer->setBackgroundColor(0.98, 0.98, 0.98, v2); // 设置灰色背景viewer->addText("SIFT Keypoints", 10, 10, "v2_text", v2);// 原始点云显示为绿色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> original_color(cloud, 0, 255, 0);viewer->addPointCloud(cloud, original_color, "original_cloud", v1);// 关键点显示为红色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color(keypoints, 255, 0, 0);viewer->addPointCloud(keypoints, keypoints_color, "keypoints_cloud", v2);// 设置点大小viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "keypoints_cloud");// 添加坐标系viewer->addCoordinateSystem(1.0);while (!viewer->wasStopped()){viewer->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(100000));}
}

2.2完整代码

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/keypoints/sift_keypoint.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/common/time.h>
#include <boost/thread/thread.hpp>// 基于Z梯度估计3D点云的SIFT关键点
namespace pcl
{template<>struct SIFTKeypointFieldSelector<PointXYZ>{inline floatoperator () (const PointXYZ& p) const{return p.z;}};
}// 提取SIFT关键点
void extractSIFTKeypoints(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::PointWithScale>::Ptr keypoints)
{const float min_scale = 0.001f;           // 设置尺度空间中最小尺度的标准偏差          const int n_octaves = 3;                  // 设置尺度空间层数,越小则特征点越多           const int n_scales_per_octave = 15;       // 设置尺度空间中计算的尺度个数const float min_contrast = 0.0001f;       // 设置限制关键点检测的阈值   // 创建SIFT关键点检测对象pcl::SIFTKeypoint<pcl::PointXYZ, pcl::PointWithScale> sift;sift.setInputCloud(cloud);                // 设置输入点云pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());sift.setSearchMethod(tree);               // 设置KdTree搜索sift.setScales(min_scale, n_octaves, n_scales_per_octave); // 设置尺度范围sift.setMinimumContrast(min_contrast);    // 设置最小对比度// 执行SIFT关键点检测sift.compute(*keypoints);
}// 可视化SIFT关键点
void visualizeSIFTKeypoints(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints)
{boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("SIFT Keypoints Viewer"));int v1(0), v2(0);viewer->createViewPort(0, 0.0, 0.5, 1.0, v1);viewer->setBackgroundColor(1.0, 1.0, 1.0, v1); // 设置白色背景viewer->addText("Original Point Cloud", 10, 10, "v1_text", v1);viewer->createViewPort(0.5, 0.0, 1.0, 1.0, v2);viewer->setBackgroundColor(0.98, 0.98, 0.98, v2); // 设置灰色背景viewer->addText("SIFT Keypoints", 10, 10, "v2_text", v2);// 原始点云显示为绿色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> original_color(cloud, 0, 255, 0);viewer->addPointCloud(cloud, original_color, "original_cloud", v1);// 关键点显示为红色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color(keypoints, 255, 0, 0);viewer->addPointCloud(keypoints, keypoints_color, "keypoints_cloud", v2);// 设置点大小viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "keypoints_cloud");// 添加坐标系viewer->addCoordinateSystem(0.1);while (!viewer->wasStopped()){viewer->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(100000));}
}int main(int argc, char* argv[])
{pcl::StopWatch watch; // 计时器pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_xyz(new pcl::PointCloud<pcl::PointXYZ>);pcl::io::loadPCDFile("bunny.pcd", *cloud_xyz);// 提取SIFT关键点pcl::PointCloud<pcl::PointWithScale>::Ptr sift_keypoints(new pcl::PointCloud<pcl::PointWithScale>);extractSIFTKeypoints(cloud_xyz, sift_keypoints);// 将SIFT关键点转换为标准XYZ格式pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_temp(new pcl::PointCloud<pcl::PointXYZ>);pcl::copyPointCloud(*sift_keypoints, *cloud_temp);std::cout << "Extracted " << sift_keypoints->size() << " keypoints" << std::endl;std::cout << "SIFT关键点提取用时: " << watch.getTimeSeconds() << "秒" << std::endl;// 可视化输入点云和SIFT关键点visualizeSIFTKeypoints(cloud_xyz, cloud_temp);return 0;
}

三、实现效果

http://www.hengruixuexiao.com/news/30091.html

相关文章:

  • 文化类网站建设寄生虫seo教程
  • 聊城做网站的公司平台常见的网络推广方式有哪些
  • PHP amp MySQL网站建设宝典seo优化技术是什么
  • 泰和县城乡建设局网站青岛谷歌优化
  • 哪个网站可以做头像的百度店铺怎么入驻
  • 做网站常用图标whois查询 站长工具
  • 做网站全过程新东方烹饪学校
  • 66郑州网站建设市场推广策略
  • 怎么推广自己的网站链接百度竞价排名规则及费用
  • 秦皇岛开发区建设局网站seo怎么优化关键词排名培训
  • 做彩票网站需要多少钱百度收录最新方法
  • 网站做推广有用吗免费入驻的电商平台
  • 网站标题权重吗seo服务的内容
  • win10系统可以做网站搭建seo是干什么的
  • 高明网站建设哪家好谷歌sem和seo区别
  • 网站需要去工信部做备案广告投放公司
  • 东莞公司网站制作博客seo教程
  • 做电影网站怎样赚钱吗seo软件
  • js导入wordpress深圳seo排名
  • 做图素材的网站有哪些企业网络搭建方案
  • 政府网站建设团队写软文用什么软件
  • 禅城区做网站策划手机百度高级搜索入口
  • 美妆网站开发论文谷歌推广外包
  • 大型网站开发 书籍优化大师百科
  • 哈尔滨网站开发联系薇国内永久免费域名注册
  • 如何制作个人网站主页推广项目
  • 淘宝网站设计价格sem是什么意思?
  • 企业做国外网站多少钱关键词采集软件
  • 电商平台哪个最好优化网站链接的方法
  • 怎么做淘宝代购网站南宁seo排名首页