当前位置: 首页 > news >正文

个人网站对应网站网址如何制作一个自己的网站

个人网站对应网站网址,如何制作一个自己的网站,答题助手网站怎么做的,3d建模软件免费下载接前文,我们在本地Windows系统上,基于GGUF文件部署了DeepSeek模型(DeepSeek-R1-Distill-Qwen-1.5B.gguf版本),但是GGUF是已经量化的版本,我们除了对其进行微调之外,无法对其训练,那么还有没有其他办法对本地的GGUF部署的DeepSeek模型进行训练呢?今天我们就反其道而行之…

        接前文,我们在本地Windows系统上,基于GGUF文件部署了DeepSeek模型(DeepSeek-R1-Distill-Qwen-1.5B.gguf版本),但是GGUF是已经量化的版本,我们除了对其进行微调之外,无法对其训练,那么还有没有其他办法对本地的GGUF部署的DeepSeek模型进行训练呢?今天我们就反其道而行之,将GGUF文件转换为PyTorch格式再训练。

        前提:已经部署好了DeepSeek,可以看我的文章:个人windows电脑上安装DeepSeek大模型(完整详细可用教程)_deepseek-r1-distill-qwen-1.5b-gguf-CSDN博客,或是下载有了GGUF文件,可以到我CSDN上下载。

一、对GGUF文件转换为PyTorch格式的思考

        首先,需要确认是否已经有现成的工具或者脚本可以完成这个转换。

        接下来,我应该了解GGUF文件的结构。GGUF是一个二进制格式,包含模型的参数、架构信息和其他元数据。而PyTorch模型通常由模型类定义的结构和state_dict组成,所以转换的关键在于读取GGUF中的参数,并将它们正确地加载到对应的PyTorch模型中。可能需要先加载GGUF文件,读取其中的权重,然后创建一个对应的PyTorch模型结构,并将权重一一对应地填入。所以需要先解决如何读取GGUF文件里面的内容,由什么组成。

        我需要考虑模型的架构是否一致。比如,如果是LLAMA模型的GGUF文件,那么对应的PyTorch模型应该是Hugging Face的LLaMA实现。这时候可能需要确保两者的层结构、参数命名是否匹配。例如,GGUF中的参数名称可能和Hugging Face中的名称不同,需要做映射。这一步可能需要手动编写一些代码来处理参数名称的转换。DeepSeek模型的结构、参数是什么?PyTorch模型的结构、参数是什么?DeepSeek模型的GGUF文件如何对应PyTorch模型

        另外,还需要注意数据类型的问题。GGUF中的参数可能以某种量化格式存储,比如4位或8位整数,而PyTorch模型通常使用32位或16位浮点数。如果是量化过的GGUF模型,转换到PyTorch可能需要反量化,这可能会影响模型的大小和计算效率。但如果是非量化的原始模型,可能可以直接转换。

        以上过程可能涉及到的步骤:

1. 安装必要的库,比如llama-cpp-python,用于读取GGUF文件。

2. 加载GGUF模型,获取其中的权重参数。

3. 创建对应的PyTorch模型结构,例如使用Hugging Face的AutoModelForCausalLM。

4. 将GGUF中的参数转换为PyTorch格式,并加载到模型中。

5. 保存PyTorch模型为标准的格式,如PyTorch的pt文件或上传到Hugging Face Hub。

        可能的难点在于参数名称的映射和格式转换。GGUF中的参数可能以特定的层次结构存储,而PyTorch模型的结构可能不同,需要逐一对应。此外,如果有量化参数,处理起来可能更复杂。因为某些框架可能存储的权重是转置过的。比如,假设GGUF中的某个权重矩阵是(input_dim, output_dim),而PyTorch中对应的线性层权重是(output_dim, input_dim),这时候需要转置。

        总结起来,可能需要考虑的问题有:

1.需要注意不同层的参数名称匹配,需要编写一个映射字典,将GGUF中的参数名称转换为Hugging Face模型的参数名称。

2. 可能需要调整参数的形状或数据类型。

3. 可能需要处理张量的转置。

4. 如果GGUF模型是量化的可能需要反量化。

        根据以上分析得出,转换的具体步骤

1. 解析GGUF文件的元数据以确定模型配置,确定GGUF模型对应的PyTorch模型架构(例如LLaMA)。

2. 安装必要的库,如llama-cpp-python,transformers,torch等。

3. 编写或找到能够读取GGUF文件并提取权重的代码。解析GGUF文件的元数据,确定模型的架构参数(如层数、隐藏层大小、注意力头数等)

4. 根据这些元数据,创建对应的PyTorch模型实例。

5. 遍历GGUF文件中的每个张量,将其转换为PyTorch张量,映射参数名称,调整形状和数据类型,加载到PyTorch模型中。

6. 验证转换后的模型是否能正常推理。

7. 保存PyTorch模型。

二、DeepSeek-R1-Distill-Qwen-1.5B.gguf量化版本分析

        要将DeepSeek模型的GGUF文件转换成Pytorch格式,就要先了解DeepSeek-R1-Distill-Qwen-1.5B是什么,又有哪些版本。DeepSeek-R1-Distill-Qwen-1.5B是一个通过蒸馏技术从DeepSeek-R1模型中提取的紧凑高效版本,专注于数学和逻辑推理任务。该模型提供了多种量化版本,以满足不同的性能和资源需求。

1.量化版本概述

量化类型

文件大小

描述

推荐程度

f32

7.11GB

全精度浮点权重,最高质量,不推荐用于资源受限环境

不推荐

f16

3.56GB

半精度浮点权重,质量接近 f32,资源占用减半

可选

Q8_0

1.89GB

极高精度量化,质量几乎无损,但文件较大

不推荐

Q6_K_L

1.58GB

使用Q8_0量化嵌入和输出权重,非常高质量,近乎完美

推荐

Q6_K

1.46GB

非常高质量,近乎完美

推荐

Q5_K_L

1.43GB

使用 Q8_0 量化嵌入和输出权重,高质量

推荐

Q5_K_M

1.29GB

高质量,推荐

推荐

Q4_K_L

1.29GB

使用 Q8_0 量化嵌入和输出权重,质量良好

推荐

Q5_K_S

1.26GB

高质量,推荐

推荐

Q3_K_XL

1.18GB

较低质量,但适合低内存环境

可选

Q4_1

1.16GB

与 Q4_K_S 性能相似,但在 Apple 硬件上更节能

可选

Q4_K_M

1.12GB

质量良好,适用于大多数场景

推荐

Q4_K_S

1.07GB

质量略有下降,但节省更多空间

推荐

Q4_0

1.07GB

遗留格式,支持 ARM 和 AVX CPU 推理

可选

IQ4_NL

1.07GB

与 IQ4_XS 类似,但略大,支持 ARM CPU 推理

可选

IQ4_XS

1.02GB

质量尚可,体积小,性能与 Q4_K_S 类似

推荐

http://www.hengruixuexiao.com/news/28196.html

相关文章:

  • 网站 备案 名称郑州网站推广公司排名
  • 上海高端网站公司哪家好成品短视频网站源码搭建
  • 做网站 php java公关公司提供的服务有哪些
  • 百度网站提交浙江百度推广
  • 网站建设排版规定快照关键词优化
  • 站长之家网址ip查询网站搜索优化价格
  • 淄博手机网站开发公司网站制作流程
  • 建立网站策划书邯郸网站优化
  • 濮阳新闻直播老铁seo外链工具
  • 做a小视频网站网络广告营销成功案例
  • 做网站的电脑软件网络营销有哪些内容
  • 运营好的网站制作中心关键词分析
  • 商务网站的规划与建设总结优化营商环境的措施建议
  • app与网站的区别代运营公司排名
  • 成都网络优化网站建设网站模板下载免费
  • 怎么盗号网站怎么做国外域名注册
  • 南宁网站制作公太原关键词排名推广
  • 影院网站建设主管百度关键词优化大
  • 网站单页站群企业网络营销策划案
  • 电子商务是电商吗班级优化大师手机版下载(免费)
  • 即墨网站建设哪里有搜索引擎优化网站的网址
  • 怎么把网站维护注册自己的网站
  • 委托别人做网站 域名所有权百度知道个人中心
  • 网站进入沙盒期网络营销产品的首选产品
  • 用shopify 做网站百度外推排名
  • 淘宝网站制作免费网站制作成品
  • wordpress 大数据备份湖南网站seo
  • 东莞大朗最新通告seo学徒招聘
  • 酒店 深圳 网站建设百度推广在线客服
  • 网站后台上传图片步骤网站推广怎么做