当前位置: 首页 > news >正文

锦州市住房和城乡建设委员会网站西安网站推广排名

锦州市住房和城乡建设委员会网站,西安网站推广排名,有什么做ppt的网站,济南快速网站制作公司一、LeetCode1049. 最后一块石头的重量 II 题目链接:1049. 最后一块石头的重量 II 题目描述: 有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。 每一回合,从中选出任意两块石头,然后将…

一、LeetCode1049. 最后一块石头的重量 II

题目链接:1049. 最后一块石头的重量 II
题目描述:

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0

示例 1:

输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

示例 2:

输入:stones = [31,26,33,21,40]
输出:5

提示:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 100
算法分析:
定义dp数组及下标含义:

dp[j]:表示容量为j的背包所能装的物品最大价值(石头的重量)为dp[j]。

递推公式:

dp[j]=max(dp[j],dp[j-stones[i]]+stones[i])。

初始化:

dp[0]=0。

遍历顺序:

先遍历物品在遍历背包容量。

代码如下:

class Solution {public int lastStoneWeightII(int[] stones) {int len = stones.length;int sum = 0;for(int i = 0; i < len; i++)sum += stones[i];int mid;mid = sum / 2;int[] dp = new int[mid + 1];for(int i = stones[0]; i <= mid; i++)dp[i] = stones[0];for(int i = 1; i < len; i++) {for(int j = mid; j >= stones[i]; j--) {dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);}}return sum - dp[mid] * 2;}
}

二、LeetCode494. 目标和

题目链接:494. 目标和
题目描述:

给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

提示:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000
算法分析:

设添加+的元素集合总和为add,添加-的元素集合总和为des,则原数组的所有元素之和sum=add+des

由题意target=add-des;

des=add-target;

sum=add+(add-target);

add=(sum+target)/2;

所以我们只需要在原数组中找出和等于add的方法数就可以了。

于是我们可以用动态规划中背包思路来解。

定义dp数组及下标含义:

dp[j]表示元素和为j的方法有dp[j]种。

递推公式:

dp[j]+=dp[j-nums[i]];

例如:若有元素1,2,3,4,5,6,则加上该元素后和为5的方法有dp[5]=dp[5-1]+dp[5-2]+dp[5-3]+dp[5-4]+dp[5-5]种(j>=nums[i])。

初始化:

我们初始化dp[0]=1;

表示元素和为0的方法有一种,因为如果为0的话那么所有的递推结果都将为0。

遍历顺序:

先遍历元素在遍历总和。

代码如下:

class Solution {public int findTargetSumWays(int[] nums, int target) {int len = nums.length;int sum = 0;//数组总和for(int i = 0; i < len; i++)sum += nums[i];if(Math.abs(target) > sum) return 0;//如果target的绝对值大于sum,那么无论数组中所有元素都取正还是负都不肯能等于targetif((sum + target) % 2 != 0) return 0;//没有结果,如sum是5target是0的话,无解int add = (sum + target) / 2;int[] dp = new int[add + 1];dp[0] = 1;for(int i = 0; i < len; i++) {for(int j = add; j >= nums[i]; j--) {dp[j] += dp[j - nums[i]];}}return dp[add];}
}

总结

求背包问题时要明确定义dp数组所表示的含义,对于不同的问题可能会有不同的定义,

如1049. 最后一块石头的重量 II中,dp[j]表示容量为j的背包所能装的石头的重量最大为dp[j]。

而494. 目标和中dp[j]表示装满容量为j的方法有dp[j]种。

http://www.hengruixuexiao.com/news/27546.html

相关文章:

  • 大连福佳新城2026年建站吗广告推广怎么做最有效
  • 四平网站制作seo网站排名推广
  • 商业设计网站有哪些百度自助建站官网
  • 沧州网站建设的技术方案东方网络律师团队
  • 网站名称 如何注册搜索网站
  • flash网站模板中心网站如何做推广
  • 视频网站做cpa免费推广的app有哪些
  • 哪里有做网站系统黄冈免费网站推广平台汇总
  • 免费域名申请个人网站谷歌搜索官网
  • 网站后台统计怎么启动啊整合营销的案例
  • 设计做网站哪家公司好怎么做百度推广平台
  • 私人订制网站有哪些财经新闻每日财经报道
  • 王爷请自重seo流程
  • 做地方门户网站的排名个人网站制作模板主页
  • 手机做任务赚钱的网站seo代码优化
  • 沈阳网站建设工作seo营销是什么
  • thinkphp租房网站开发seo工具在线访问
  • 专门做情侣装的网站seo网站推广优化就找微源优化
  • 上海网站建设沪icp备百度搜索排名靠前
  • 临时域名用于网站调试网站自助建站系统
  • 快速搭建网站的工具有哪些平台网站开发公司
  • 电脑维护网站模板信阳百度推广公司电话
  • 政府网站建设的重要性台州网站建设推广
  • 青州住房和城乡建设网站河北网站推广公司
  • 想做网站策划怎么做百度有人工客服吗
  • 会议专属网站平台建设报价单广告优化
  • 织梦网站防黑怎么做网站功能优化的方法
  • 网络用户提要求找人帮忙做的网站网站建设推广多少钱
  • 两个域名同一个网站做优化今日重大事件
  • 怎么用建站系统建网站免费seo快速收录工具