怎样申请网站域名和空间网站展示型推广
这里分别使用基于像素手动计算、调用工具箱函数两种方法实现直方图规定化
1.基于像素进行直方图规定化
(1)读取了原始图像和期望图像,并将它们转换为灰度图像
(2)计算原始图像和期望图像的像素概率分布直方图P(i)和P(j),并统计它们的累积直方图Pi和Pj
(3)根据原始图像和期望图像的累积直方图,找到使Pi/Pj误差最小的映射关系
(4)对原始图像进行直方图规定化,展示原始图像、期望图像及规定化后的图像
代码:
%直方图规定化
I0=imread("C:\Users\Desktop\图像1.jpg");
I=rgb2gray(I0);
I1=rgb2gray(I0);
G=imread("C:\Users\Desktop\期望图像0.jpg");
G2=rgb2gray(G);
%计算原图像的长宽
[x,y]=size(I);
%创建数组存储像素概率
p=zeros(1,256)
%统计每个像素值出现的概率
for i=0:255
%length计算相同像素的个数
p(i+1)=length(find(I==i))/(x*y);
end
%输出原图及原图直方图
figure,
subplot(331),imshow(I);
title('原图')
subplot(332);
bar(0:255,p,'b')
title('原图直方图');
%求累计概率,得到累积直方图
s=zeros(1,256)
for i=1:256
for j=1:i
s(i)=p(j)+s(i);
end
end
subplot(333);
bar(0:255,s,'b');
title('原图累积直方图');
%计算期望图像的长宽
[a,b]=size(G2);
%创建数组存储像素概率
z=zeros(1,256)
%统计每个像素值出现的概率
for i=0:255
%length计算相同像素的个数
z(i+1)=length(find(G2==i))/(a*b);
end
%输出期望图像及直方图
subplot(334),imshow(G2);
title('期望图像')
subplot(335);
bar(0:255,z,'b')
title('期望图像直方图');
%求累计概率,得到累积直方图
h=zeros(1,256)
for i=1:256
for j=1:i
h(i)=z(j)+h(i);
end
end
subplot(336);
bar(0:255,h,'b');
title('期望图像累积直方图');
new_I=zeros(256,1,'uint8');
%按照[Pj/Pi]误差最小,查找i对应的j
for i=1:1:256
min=abs(s(i)-h(1));
for j=1:1:256
if(abs(s(i)-h(j))<min)
min=abs(s(i)-h(j));
new_I(i)=j;
end
end
end
% 应用映射关系进行直方图规定化
new_Img = zeros(size(I1));
for i = 1:256
new_Img(I1==i)=new_I(i);
end
[x,y]=size(new_Img);
p1=zeros(1,256)
for i=0:255
p1(i+1)=length(find(new_Img==i))/(x*y);
end
subplot(337)
imshow(uint8(new_Img)); % 使用uint8()函数将图像数据转换为无符号整数类型
title('规定化的图像');
subplot(338)
bar(0:255,p1,'b');
title('直方图规定化');
%求累计概率,得到累积直方图
p11=zeros(1,256)
for i=1:256
for j=1:i
p11(i)=p(j)+p11(i);
end
end
subplot(339);
bar(0:255,p11,'b');
title('规定图像后的累积直方图');
2.调用工具箱函数实现直方图规定化
实现直方图规定化的语法为:g=histeq(f,hspec)
其中,f为输入图像,hspec为规定的直方图,g为输出图像,输出图像的直方图近似于指定的直方图hspec。首先读取了一张灰度图片,然后定义了一个灰度级范围hgram,范围从50到250。接着使用histeq函数对原始图像G进行直方图规定化,得到规定化后的图像I_histeq。
代码:
%直方图规定化
G=imread('C:\Users\Desktop\灰度图片.jpg');
hgram=50:2:250
%使用histeq函数进行规定化
I_histeq=histeq(G,hgram);
figure,
subplot(221),imshow(G);
title('原图')
subplot(222),imhist(G);
title('原图直方图')
subplot(223),imshow(I_histeq);
title('规定化图像')
subplot(224),imhist(I_histeq);
title('规定化图像直方图')
图1为通过手动计算调整原始图像的像素值分布,使其尽可能接近期望图像的像素值分布,从而实现图像的直方图规定化的结果。原始图像的直方图可能比较集中,显示较低的对比度和动态范围。而期望图像的直方图覆盖了更广泛的像素值范围,有更高的对比度和动态范围。规定化后的图像直方图与期望图像的直方图更加相似,可以看到原始图像人物脸部区域较亮,对比度较高,而期望图像整体较暗,对比度较低,通过规定化处理后,图像对比度降低,可以明显发现人物脸部区域变暗。

图2为调用工具包函数实现的直方图规定化结果。通过使用工具包中的函数调整图片的对比度和亮度。自定义期望直方图(hgram=50:2:250)使调整的图像像素均匀分布在50-250之间,经过规定化处理,可以发现规定化后的图像对比度和亮度增强。
