当前位置: 首页 > news >正文

html5可以做交互网站吗国际新闻最新消息今天

html5可以做交互网站吗,国际新闻最新消息今天,wordpress新手技巧,wordpress class类今日继续我的Jetsonnano学习之路,今日学习安装使用的是:MediaPipe 一款开源的多媒体机器学习模型应用框架。可在移动设备、工作站和服务 器上跨平台运行,并支持移动 GPU 加速。 介绍与程序搬运官方,只是自己的学习记录笔记&am…
今日继续我的Jetsonnano学习之路,今日学习安装使用的是:MediaPipe  一款开源的多媒体机器学习模型应用框架。可在移动设备、工作站和服务 器上跨平台运行,并支持移动 GPU 加速。
介绍与程序搬运官方,只是自己的学习记录笔记,同时记录一些自己的操作过程。

目录

MediaPipe介绍与安装:

安装更新 APT 下载列表:

安装 pip:

更新 pip:

传输文件:

MediaPipe使用流程:

Mediapipe 人脸识别:

输入指令安装依赖包:

编写Python程序:

效果测试:

Mediapipe 手势识别:

 编写python程序:

 效果测试:


MediaPipe介绍与安装:

MediaPipe 优点
1) 支持各种平台和语言,如 IOS Android C++ Python JAVAScript Coral 等。
2) 速度很快,模型基本可以做到实时运行。
3) 模型和代码能够实现很高的复用率。
MediaPipe 缺点
1) 对于移动端, MediaPipe 略显笨重,需要至少 10M 以上的空间。
2) 深度依赖于 Tensorflow ,若想更换成其他机器学习框架,需要更改大量代码。
3) 使用的是静态图,虽然有助于提高效率,但也会导致很难发现错误。

安装更新 APT 下载列表:

sudo apt update

安装 pip

sudo apt install python3-pip

更新 pip

python3 -m pip install --upgrade pip

传输文件:

将mediapipe传输给Jetson:

文件下载:https://download.csdn.net/download/qq_64257614/88322416?spm=1001.2014.3001.5503

在jetson桌面将其拖进文件管理的home目录然后输入终端指令进行安装:

pip3 install mediapipe-0.8.5_cuda102-cp36-cp36m-linux_aarch64.whl

安装成功提示:

 

 

MediaPipe使用流程:

下图是 MediaPipe 的使用流程。其中,实线部分需要自行编写代码,虚线部分则无需编
写。 MediaPipe 内部已经集成好了 AI 相关的模型和玩法,用户可以利用 MediaPipe 来快速推
算出实现一个功能所需的框架

Mediapipe 人脸识别:

输入指令安装依赖包:

pip3 install dataclasses

编写Python程序:

import cv2
import mediapipe as mp
import timelast_time = 0
current_time = 0
fps = 0.0
def show_fps(img):global last_time, current_time, fpslast_time = current_timecurrent_time = time.time()new_fps = 1.0 / (current_time - last_time)if fps == 0.0:fps = new_fps if last_time != 0 else 0.0else:fps = new_fps * 0.2 + fps * 0.8fps_text = 'FPS: {:.2f}'.format(fps)cv2.putText(img, fps_text, (11, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (32, 32, 32), 4, cv2.LINE_AA)cv2.putText(img, fps_text, (10, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (240, 240, 240), 1, cv2.LINE_AA)return imgmp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils# For webcam input:
cap = cv2.VideoCapture(0)
with mp_face_detection.FaceDetection(min_detection_confidence=0.5) as face_detection:while cap.isOpened():success, image = cap.read()if not success:print("Ignoring empty camera frame.")# If loading a video, use 'break' instead of 'continue'.continue# To improve performance, optionally mark the image as not writeable to# pass by reference.image.flags.writeable = Falseimage = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)results = face_detection.process(image)# Draw the face detection annotations on the image.image.flags.writeable = Trueimage = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)if results.detections:for detection in results.detections:mp_drawing.draw_detection(image, detection)# Flip the image horizontally for a selfie-view display.image = show_fps(cv2.flip(image, 1))cv2.imshow('MediaPipe Face Detection', image)if cv2.waitKey(5) & 0xFF == 27:break
cap.release()

最后传输python文件,然后输入指令运行,注意放在文件夹中的需要使用cd命令进行目录的跳转

效果测试:

Mediapipe人脸识别

Mediapipe 手势识别:

 编写python程序:

import cv2
import mediapipe as mp
import numpy as np
import timelast_time = 0
current_time = 0
fps = 0.0
def show_fps(img):global last_time, current_time, fpslast_time = current_timecurrent_time = time.time()new_fps = 1.0 / (current_time - last_time)if fps == 0.0:fps = new_fps if last_time != 0 else 0.0else:fps = new_fps * 0.2 + fps * 0.8fps_text = 'FPS: {:.2f}'.format(fps)cv2.putText(img, fps_text, (11, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (32, 32, 32), 4, cv2.LINE_AA)cv2.putText(img, fps_text, (10, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (240, 240, 240), 1, cv2.LINE_AA)return imgdef distance(point_1, point_2):"""计算两个点间的距离:param point_1: 点1:param point_2: 点2:return: 两点间的距离"""return math.sqrt((point_1[0] - point_2[0]) ** 2 + (point_1[1] - point_2[1]) ** 2)def vector_2d_angle(v1, v2):"""计算两向量间的夹角 -pi ~ pi:param v1: 第一个向量:param v2: 第二个向量:return: 角度"""norm_v1_v2 = np.linalg.norm(v1) * np.linalg.norm(v2)cos = v1.dot(v2) / (norm_v1_v2)sin = np.cross(v1, v2) / (norm_v1_v2)angle = np.degrees(np.arctan2(sin, cos))return angledef get_hand_landmarks(img_size, landmarks):"""将landmarks从medipipe的归一化输出转为像素坐标:param img: 像素坐标对应的图片:param landmarks: 归一化的关键点:return:"""w, h = img_sizelandmarks = [(lm.x * w, lm.y * h) for lm in landmarks]return np.array(landmarks)def hand_angle(landmarks):"""计算各个手指的弯曲角度:param landmarks: 手部关键点:return: 各个手指的角度"""angle_list = []# thumb 大拇指angle_ = vector_2d_angle(landmarks[3] - landmarks[4], landmarks[0] - landmarks[2])angle_list.append(angle_)# index 食指angle_ = vector_2d_angle(landmarks[0] - landmarks[6], landmarks[7] - landmarks[8])angle_list.append(angle_)# middle 中指angle_ = vector_2d_angle(landmarks[0] - landmarks[10], landmarks[11] - landmarks[12])angle_list.append(angle_)# ring 无名指angle_ = vector_2d_angle(landmarks[0] - landmarks[14], landmarks[15] - landmarks[16])angle_list.append(angle_)# pink 小拇指angle_ = vector_2d_angle(landmarks[0] - landmarks[18], landmarks[19] - landmarks[20])angle_list.append(angle_)angle_list = [abs(a) for a in angle_list]return angle_listdef h_gesture(angle_list):"""通过二维特征确定手指所摆出的手势:param angle_list: 各个手指弯曲的角度:return : 手势名称字符串"""thr_angle = 65.thr_angle_thumb = 53.thr_angle_s = 49.gesture_str = "none"if (angle_list[0] > thr_angle_thumb) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "fist"elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle_s) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "gun"elif (angle_list[0] < thr_angle_s) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "hand_heart"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "one"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "two"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (angle_list[3] < thr_angle_s) and (angle_list[4] > thr_angle):gesture_str = "three"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] > thr_angle) and (angle_list[2] < thr_angle_s) and (angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s):gesture_str = "ok"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s):gesture_str = "four"elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s):gesture_str = "five"elif (angle_list[0] < thr_angle_s) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] < thr_angle_s):gesture_str = "six"else:"none"return gesture_strmp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands# For webcam input:
cap = cv2.VideoCapture(0)
with mp_hands.Hands(min_detection_confidence=0.5,min_tracking_confidence=0.5) as hands:while cap.isOpened():success, image = cap.read()if not success:print("Ignoring empty camera frame.")# If loading a video, use 'break' instead of 'continue'.continue# Flip the image horizontally for a later selfie-view display, and convert# the BGR image to RGB.image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)# To improve performance, optionally mark the image as not writeable to# pass by reference.image.flags.writeable = Falseresults = hands.process(image)# Draw the hand annotations on the image.image.flags.writeable = Trueimage = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)gesture = "none"if results.multi_hand_landmarks:for hand_landmarks in results.multi_hand_landmarks:mp_drawing.draw_landmarks(image, hand_landmarks, mp_hands.HAND_CONNECTIONS)landmarks = get_hand_landmarks((image.shape[1], image.shape[0]), hand_landmarks.landmark)angle_list = hand_angle(landmarks)gesture = h_gesture(angle_list)if gesture != "none":break;image = show_fps(cv2.flip(image, 1))cv2.putText(image, gesture, (20, 60), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 0, 0), 4)cv2.imshow('MediaPipe Hands', image)if cv2.waitKey(5) & 0xFF == 27:break
cap.release()

 

 效果测试:

Mediapipe手势识别

 

http://www.hengruixuexiao.com/news/26347.html

相关文章:

  • 专业做厂房的网站seo规范培训
  • 青岛企业网站seo技巧网站推广的营销策划方案
  • 东莞网站建设对比网站收录优化
  • HTML模板怎么导入WordPressseo网站推广软件
  • 网站首页做301千万不要学网络营销
  • 可以做问卷的网站有哪些上线了建站
  • 继电器做网站手机优化专家下载
  • 国内酒店网站建设百度网址大全在哪里找
  • 青岛网站建设推广优化网站建设技术外包
  • 怎样做网站漂浮百度指数与百度搜索量
  • 关于美食的网站设计他达拉非功效与作用主要会有哪些
  • 免费外链发布平台在线长春seo优化
  • 信息门户网站制作指数分布的分布函数
  • 俄语购物网站建设宁波seo推广优化
  • 上海万网网站建设免费发广告帖子的网站
  • 江西省赣州市南康家具城seo网站优化公司
  • 两个人的视频bd免费观看中国seo网站优化方案摘要
  • 口碑好的秦皇岛网站建设哪里有seo推广关键词公司
  • 注册代理记账公司需要什么条件石家庄百度搜索优化
  • 网站的建设求职简历今天最新的新闻头条新闻
  • 百度爱采购推广效果怎么样?厦门seo排名优化
  • 湖南省建设厅城乡建设网站可以看国外网站的浏览app
  • 欧洲手表网站seo博客大全
  • 商业网站建设教程江东seo做关键词优化
  • 深圳做网站商搜索竞价托管
  • 昆明做整站优化阿里云com域名注册
  • php交友网站开发实例国内外十大免费crm软件推荐
  • 做网站签订合同兔子bt樱桃搜索磁力天堂
  • 高端网站建设深圳全网推广效果如何
  • 网站首页倒计时功能怎么做友情链接多少钱一个