当前位置: 首页 > news >正文

天津微信网站中国搜索引擎份额排行

天津微信网站,中国搜索引擎份额排行,河东建设局网站,网站3d特效源码目录 0. 本栏目竞赛汇总表1. 本文主旨2. AI工程架构3. 数据预处理模块3.1 配置数据路径和处理参数3.2 配置API参数3.3 配置输出路径 4. AI并行处理模块4.1 定义LLM客户端类4.2 定义数据处理函数4.3 定义JSON保存函数4.4 定义数据分片函数4.5 定义分片处理函数4.5 定义文件名排序…

目录

    • 0. 本栏目竞赛汇总表
    • 1. 本文主旨
    • 2. AI工程架构
    • 3. 数据预处理模块
      • 3.1 配置数据路径和处理参数
      • 3.2 配置API参数
      • 3.3 配置输出路径
    • 4. AI并行处理模块
      • 4.1 定义LLM客户端类
      • 4.2 定义数据处理函数
      • 4.3 定义JSON保存函数
      • 4.4 定义数据分片函数
      • 4.5 定义分片处理函数
      • 4.5 定义文件名排序函数
    • 5. 数据整合模块
      • 5.1 加载数据并生成分片
      • 5.2 初始化LLM客户端并测试
      • 5.3 并行处理数据生成
      • 5.4 合并处理结果
      • 5.5 保存最终结果

0. 本栏目竞赛汇总表

Kaggle竞赛汇总

1. 本文主旨

  • 大白话:由于在上一篇文章的数据探索中,我们发现了部分训练数据的错误解释存在缺失,因此直接使用GPT_4o+人设提示词工程,对训练集数据存在的错误解释缺失问题的处理。
  • 通过本文可收获技能:API调用AI接口、人设提示词工程案例、复杂的数据处理与缓存处理。
  • 上文回顾:Eedi大模型蒸馏方案01-竞赛信息解读与数据理解

2. AI工程架构

数据整合模块
初始化客户端
加载数据
并行处理生成
合并结果
保存CSV
AI并行处理模块
定义数据处理函数
定义LLM客户端
定义JSON保存函数
定义分片函数
定义排序函数
数据预处理模块
配置路径和参数
导入依赖库
配置API和输出

3. 数据预处理模块

3.1 配置数据路径和处理参数

data_path = "~/work/eedi_synthetic_data/MalAlgoQA_format.csv"
index_start = 0
index_end = len(df)
step = 100
max_workers = 2

3.2 配置API参数

model_config = dict(openai_api_base = "https://testshellapi.kimi.asia/v1", api_key = "****",model = "gpt-4o",default_system_prompt = """##TaskYou are a Mathematics teacher. Your task is to reason and identify the ConstructName and SubjectName and then the misconception behind the user input Incorrect Answers with the Question.ConstructName is Most granular level of knowledge related to question, appears to describe the specific mathematical method or procedure used to solve the question. It explains the technique or approach needed to reach the answer.SubjectName is More general context than the construct, represents the broader mathematical topic or category that the question belongs to.Misconceptions are a mistake in conceptual understanding and they have relations with all the applications of those concepts. For example, a single misconception on the connections among proportional relationships (part/whole, part/part, whole/part) can cause problems in identifying those patterns in drawings and can be the cause of failing to realize all parts must be of equal size, therefore associating the denominator of the fraction with the total number of parts regardless their size.Answer concisely what misconception it is to lead to getting the incorrect answer.Do not use "The misconception is" to start your answers.Do not mention the concrete details of the question or answers. ##User inputQuestion: The question textA: multiple choice answer A textB: multiple choice answer B textC: multiple choice answer C textD: multiple choice answer D textCorrect Answer: The correct answer text##You should answer in the following JSON format{"ConstructName": "here writes the constructName","SubjectName": "here writes the SubjectName""MisconceptionAName": "here writes the answer A's misconception.","MisconceptionBName": "here writes the answer B's misconception.","MisconceptionCName": "here writes the answer C's misconception.","MisconceptionDName": "here writes the answer D's misconception.",}""", # system prompt,default_temperature = 0.5,max_tokens = 256,
)

3.3 配置输出路径

cache_folder = f"./cache_{model_config['model']}_model_misconceptions_result"
if not os.path.exists(cache_folder):os.makedirs(cache_folder)
output_data_path = f"misconception_data_{os.path.splitext(os.path.basename(data_path))[0]}_{model_config['model']}.csv"

4. AI并行处理模块

4.1 定义LLM客户端类

class LLMChat:def __init__(self, openai_api_base, api_key, model, default_temperature, default_system_prompt, max_tokens=512):self.client = OpenAI(api_key = api_key,base_url=openai_api_base,)self.model = modelself.default_temperature = default_temperatureself.default_system_prompt = default_system_promptself.max_tokens = max_tokensdef chat(self, user_prompt, system_prompt=None, temperature=None):if not system_prompt:system_prompt = self.default_system_promptif not temperature:temperature = self.default_temperaturechat_response = self.client.chat.completions.create(model=self.model,temperature=temperature,messages=[{"role": "system", "content": system_prompt},{"role": "user", "content": user_prompt},],max_tokens=self.max_tokens,response_format={"type": "json_object"})return chat_response.choices[0].message.content

4.2 定义数据处理函数

def process_row(args, debug=False):user_prompt = """Question: {question}A: {answer_a}B: {answer_b}C: {answer_c}D: {answer_d}Correct Answer: {correct_answer}"""index, row = argsca = row["CorrectAnswer"]correctanswer = row[f"Answer{ca}Text"]input_user_prompt = user_prompt.format(question=row['QuestionText'],answer_a=row['AnswerAText'],answer_b=row['AnswerBText'],answer_c=row['AnswerCText'],answer_d=row['AnswerDText'],correct_answer=correctanswer,)ret_data = {}try:ret_data = vc.chat(input_user_prompt)if debug:print(ret_data+'\n')except Exception as e:print(f'An exception occur {str(e)}')ret_data['error'] = str(e)passif debug:print('system: ', model_config['default_system_prompt'])print('>'* 50)print('user_input: ', input_user_prompt)print('>'* 50)print('assistant: ', ret_data)return ret_data

4.3 定义JSON保存函数

def save_json(fn, obj):with open(fn, 'w') as f:json.dump(obj, f, ensure_ascii=False, indent=4)print(f"save file to {fn}")

4.4 定义数据分片函数

def slice_range(start, end, step):if step <= 0:raise ValueError("步长必须大于0")result = []while start <= end:result.append(start)start += stepif result[-1] < end:result.append(end)return result

4.5 定义分片处理函数

def process_pairs(sliced_range):slices = []for first, second in zip(sliced_range, sliced_range[1:]):slices.append([first, second])return slices

4.5 定义文件名排序函数

def natural_sort_key(filename):parts = re.findall(r'\d+', filename)return tuple(map(int, parts))

5. 数据整合模块

5.1 加载数据并生成分片

df = pd.read_csv(data_path)
df.head()
sliced_range = process_pairs(slice_range(index_start, index_end, step))

df数据检查:
在这里插入图片描述

5.2 初始化LLM客户端并测试

vc = LLMChat(**model_config)
r = process_row((7, df.iloc[7]), debug=True)

5.3 并行处理数据生成

for slices in tqdm(sliced_range, total=len(sliced_range)):output_filepath = f'{cache_folder}/cache_res_{slices[0]}.json'if os.path.exists(output_filepath):print(f'cache file exists, skip {output_filepath}')continuedf_tasks = df.iloc[slices[0]:slices[1]]results = []with ProcessPoolExecutor(max_workers=max_workers) as executor:results = list(tqdm(executor.map(process_row, df_tasks.iterrows()), total=len(df_tasks)))save_json(output_filepath, results)

5.4 合并处理结果

f_names = glob.glob(f'{cache_folder}/*.json')
sorted_filenames = sorted(f_names, key=natural_sort_key)
f_names = sorted_filenamesresults = []
for fn in f_names:with open(fn, 'r') as f:batch_results = json.load(f)results.extend(batch_results)l = len(results)
results = [json.loads(r) for r in results]

5.5 保存最终结果

df = df.iloc[:l]
gen_df = pd.DataFrame(results)
df = pd.concat([df, gen_df], axis=1)
df.to_csv(output_data_path, index=False)

(To be continued)

http://www.hengruixuexiao.com/news/22414.html

相关文章:

  • 公司官网怎么设计搜索引擎优化的五个方面
  • 创建网站赚钱百度网盘网页版登录
  • 室内设计是真的烂大街了吗快速优化排名公司推荐
  • 网站上可以做直播吗网络seo外包
  • 湖南铁军工程建设有限公司网站怎么在百度免费推广
  • 安卓程序开发用什么语言西安网站seo工作室
  • 合肥房地产最新消息江苏泰州seo网络优化推广
  • 贵州网站制作设计公司怎么在百度推广自己的公司
  • 左权网站建设百度seo优化排名
  • 新乡网站推广公司推广工具
  • 做网站虚拟主机和云服务器吗建网站的公司排名
  • 自己做的网站有排名吗百度竞价推广效果好吗
  • 重庆可作为推广的网站nba排名最新赛程
  • 新注册公司网站免费怎么做百度网站大全首页
  • 南宁市网站开发建设市场推广方式有哪几种
  • 建筑网格布是用什么材料杭州seo平台
  • 大型网站开发java网站搭建一般要多少钱
  • 德阳做网站的网站推广专家
  • 河北省网站备案步骤武汉网站搜索引擎优化
  • 做网站登录的需求分析太原最新情况
  • 天元建设集团有限公司张桂玉丑闻事件seo服务合同
  • 万远翔网站建设百度网站官网
  • 个人做网站多少钱软文有哪些
  • 开发公司网签合同条件seo是什么职位简称
  • 论坛打赏网站开发搜什么关键词比较刺激
  • 深圳都信建设监理有限公司网站产品品牌策划方案
  • 山东省荣成市建设局网站seo关键词排名优化系统
  • 校际凡科平台官网seo是什么缩写
  • 网站静态页模板快速优化关键词排名
  • 上海网站建设免微博推广方法有哪些