当前位置: 首页 > news >正文

星空传媒有限公司网站现在学seo课程多少钱

星空传媒有限公司网站,现在学seo课程多少钱,湖南靠谱seo优化费用,杀手杰夫链接网站代码LM(Levenberg-Marquardt)算法和高斯牛顿(Gauss-Newton)算法是两种用于非线性最小二乘问题的优化算法,它们也有一些相似之处: 迭代优化:LM算法和高斯牛顿算法都使用迭代的方式来优化参数值&#…

LM(Levenberg-Marquardt)算法和高斯牛顿(Gauss-Newton)算法是两种用于非线性最小二乘问题的优化算法,它们也有一些相似之处

  1. 迭代优化:LM算法和高斯牛顿算法都使用迭代的方式来优化参数值,以逐步减小拟合残差。

  2. 非线性拟合:这两种算法都适用于非线性函数的拟合任务,在拟合参数化模型与观测数据之间的差异时表现出良好的效果。

  3. 基于梯度的优化:高斯牛顿算法和LM算法都利用了目标函数的梯度信息。高斯牛顿算法使用一阶导数(Jacobian矩阵)来近似目标函数,而LM算法在梯度下降方向上引入了一个调节因子。

  4. 局部搜索:这两种算法都是局部搜索方法,即在每次迭代中更新参数值以接近局部最优解。

虽然LM算法和高斯牛顿算法在实现细节和收敛性质上存在差异,但它们都属于非线性最小二乘优化问题的常用方法,并且共享一些相似的思想和原理。

LM(Levenberg-Marquardt)算法和高斯牛顿(Gauss-Newton)算法都是用于非线性最小二乘问题的优化算法,它们在计算方式和收敛性质上存在一些区别

  1. 计算方式:

    • 高斯牛顿算法通过迭代地线性近似非线性函数,将非线性最小二乘问题转化为一系列线性最小二乘子问题。每次迭代,通过求解线性系统来更新参数值。
    • LM算法则结合了高斯牛顿算法和梯度下降算法的思想。在每次迭代中,LM算法通过权衡高斯牛顿算法和梯度下降算法的更新步长,以更好地适应不同情况下的问题。
  2. 收敛性质:

    • 高斯牛顿算法在参数空间中可能收敛到局部极小值,因为它依赖于二阶导数信息,而二阶导数矩阵的正定性不一定成立。
    • LM算法通过引入一个调节因子(也称为阻尼因子),使得在接近极小值时能够更好地探索参数空间。这样的机制可以提供更好的全局收敛性,并且对初始参数的选择不太敏感。

总结起来,高斯牛顿算法是一种更简单和更快速的迭代方法,但可能收敛到局部极小值。而LM算法则更加复杂一些,在计算上稍微耗时,但具有更好的全局收敛性能。在实际应用中,可以根据问题的特点选择适合的优化算法。

以下是使用C++实现高斯牛顿法对一组数据进行拟合的示例代码:

#include <iostream>
#include <Eigen/Dense>using namespace Eigen;// 高斯函数模型
double gaussian(double x, double a, double b, double c) {return a * exp(-(x - b) * (x - b) / (2 * c * c));
}// 高斯牛顿拟合算法
void fitGaussian(const VectorXd& xData, const VectorXd& yData, double& a, double& b, double& c) {int n = xData.size();int m = 3; // 参数个数MatrixXd J(n, m);   // 雅可比矩阵VectorXd residual(n);  // 残差向量VectorXd delta(m);  // 参数增量向量// 设定初始参数值a = 1.0;b = 0.0;c = 1.0;// 设置最大迭代次数和收敛阈值int maxIter = 100;double epsilon = 1e-6;for (int iter = 0; iter < maxIter; ++iter) {// 构造雅可比矩阵和残差向量for (int i = 0; i < n; ++i) {double xi = xData(i);double residual_i = yData(i) - gaussian(xi, a, b, c);J(i, 0) = -residual_i / a;J(i, 1) = residual_i * (xi - b) / (c * c);J(i, 2) = residual_i * (xi - b) * (xi - b) / (c * c * c);residual(i) = residual_i;}// 计算参数增量delta = (J.transpose() * J).inverse() * J.transpose() * residual;// 更新参数估计值a += delta(0);b += delta(1);c += delta(2);// 判断是否收敛if (delta.norm() < epsilon)break;}
}int main() {// 原始数据VectorXd xData(10);VectorXd yData(10);xData << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;yData << 0.98, 1.89, 3.02, 4.15, 4.97, 6.05, 6.92, 8.01, 8.94, 10.02;// 拟合参数double a, b, c;fitGaussian(xData, yData, a, b, c);// 输出拟合结果std::cout << "Fitted parameters:\n";std::cout << "a = " << a << "\n";std::cout << "b = " << b << "\n";std::cout << "c = " << c << "\n";return 0;
}

输出:1 3 2

在这个示例中,我们定义了一个高斯函数gaussian()用于描述高斯函数模型。fitGaussian()函数实现了高斯牛顿拟合算法,其中根据雅可比矩阵和残差计算参数增量,并根据增量更新参数估计值。主函数中给出了一组原始数据,然后调用fitGaussian()函数进行拟合。最后,输出拟合结果。

需要注意的是,这只是一个简单的示例,实际应用中可能需要根据具体情况来选择合适的模型和参数优化算。

以下是使用Levenberg-Marquardt (LM) 算法进行高斯函数拟合的示例代码:

#include <iostream>
#include <Eigen/Dense>
#include <unsupported/Eigen/LevenbergMarquardt>using namespace Eigen;// 高斯函数模型
struct GaussianModel {template<typename T>bool operator()(const T* const x, T* residual) const {T a = params[0];T b = params[1];T c = params[2];residual[0] = y - a * exp(-(x[0] - b) * (x[0] - b) / (2 * c * c));return true;}double y;Vector3d params;
};// 高斯牛顿拟合算法
void fitGaussian(const VectorXd& xData, const VectorXd& yData, double& a, double& b, double& c) {int n = xData.size();Vector3d params;params << 1.0, 0.0, 1.0; // 初始参数值// 定义 LM 算法参数NumericalDiff<GaussianModel> numericalDiff;LevenbergMarquardt<NumericalDiff<GaussianModel>> lm(numericalDiff);lm.parameters.maxfev = 100; // 最大迭代次数lm.parameters.xtol = 1e-6; // 收敛阈值// 构造问题并求解GaussianModel model;model.params = params;for (int i = 0; i < n; ++i) {model.y = yData(i);VectorXd x(1);x << xData(i);lm.minimize(x, model);params = model.params;}// 更新拟合结果a = params[0];b = params[1];c = params[2];
}int main() {// 原始数据VectorXd xData(10);VectorXd yData(10);xData << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;yData << 0.98, 1.89, 3.02, 4.15, 4.97, 6.05, 6.92, 8.01, 8.94, 10.02;// 拟合参数double a, b, c;fitGaussian(xData, yData, a, b, c);// 输出拟合结果std::cout << "Fitted parameters:\n";std::cout << "a = " << a << "\n";std::cout << "b = " << b << "\n";std::cout << "c = " << c << "\n";return 0;
}

在这个示例中,我们使用了Eigen库中的LevenbergMarquardt类来实现LM算法。首先定义了一个GaussianModel结构体,其中重载了括号运算符,该运算符计算残差并返回给LM算法。然后,在fitGaussian()函数中,构造了一个LevenbergMarquardt对象并设置了最大迭代次数和收敛阈值。接下来,使用该对象对每个数据点进行拟合,并更新参数估计值。最后输出拟合结果。

请注意,为了使用LM算法,需要在代码中添加Eigen库的相关头文件,并使用命令`-I /path

http://www.hengruixuexiao.com/news/19292.html

相关文章:

  • 怎么套用网站模板环球资源网站网址
  • 陕西建设厅证件查询网站营销型网站开发公司
  • 做营销网站企业搜索引擎关键词广告
  • 永久f194078w78w来客seo
  • 体育新闻最新消息篮球宁波seo公司
  • 青岛网站建设 大公司域名申请
  • 优化网站关键词怎么做班级优化大师免费下载安装
  • 浙江网站建设哪家最好十大禁止安装应用入口
  • dede网站禁止ip访问网络营销常用的工具有哪些
  • 有哪些可以免费做视频的网站成品网站源码的优化技巧
  • 中英文网站后台直通车关键词怎么选 选几个
  • 有公众号要不要做网站八百客crm系统登录入口
  • 银川做网站哪家好如何增加网站的外链
  • 做电商网站用什么软件开发站长统计app网站
  • 如何用服务器搭建自己的网站sem优化策略
  • 沈阳seo关键字优化天津企业seo
  • 东莞网站优化seo郑州推广优化公司
  • 招代理的网站要怎么做的百度app官网下载
  • 湖北手机版建站系统价格北京网站优化方法
  • 广州城市职业学院门户网站网络推广技术外包
  • 做资源网站需要什么金华网站建设
  • 光辉网站建设公司外链吧官网
  • 网站改版提交 百度合肥网站推广电话
  • 用网站做的人工智能it培训机构哪个好一点
  • 优秀政府网站欣赏全国疫情最新报告
  • 网站添加wordpress网站设计优化
  • wordpress的wap插件windows优化大师怎么彻底删除
  • 广州网站建设外包电话营销系统
  • 网站服务器代码放在哪电商平台排行榜
  • 网页游戏网页游戏大全青岛的seo服务公司