当前位置: 首页 > news >正文

网站后台程序如何做百度新闻官网首页

网站后台程序如何做,百度新闻官网首页,网站怎么做才能被百度收录,wordpress添加价格✨博客主页:王乐予🎈 ✨年轻人要:Living for the moment(活在当下)!💪 🏆推荐专栏:【图像处理】【千锤百炼Python】【深度学习】【排序算法】 目录 😺〇、仓库…

✨博客主页:王乐予🎈
✨年轻人要:Living for the moment(活在当下)!💪
🏆推荐专栏:【图像处理】【千锤百炼Python】【深度学习】【排序算法】

目录

  • 😺〇、仓库源码
  • 😺一、数据集介绍
    • 🐶1.1 GitHub原始数据集
    • 🐶1.2 GitHub预处理后的数据集
      • 🦄1.2.1 简化的绘图文件(.ndjson)
      • 🦄1.2.2 二进制文件(.bin)
      • 🦄1.2.3 Numpy位图(.npy)
    • 🐶1.3 Kaggle数据集
  • 😺二、数据集准备
  • 😺三、获取png格式图片
  • 😺四、训练过程
    • 🐶4.1 split_datasets.py
    • 🐶4.2 option.py
    • 🐶4.3 getdata.py
    • 🐶4.4 model.py
    • 🐶4.5 train-DDP.py
    • 🐶4.6 model_transfer.py
    • 🐶4.7 evaluate.py

😺〇、仓库源码

本文所有代码存放在GitHub仓库中QuickDraw-DDP:欢迎forkstar

😺一、数据集介绍

在这里插入图片描述
Quick Draw 数据集是 345 个类别的 5000 万张图纸的集合,由游戏 Quick, Draw!的玩家贡献。这些图画被捕获为带时间戳的矢量,并标记有元数据,包括要求玩家绘制的内容以及玩家所在的国家/地区。

GitHub数据集地址: 📎The Quick, Draw! Dataset

Kaggle数据集地址:📎Quick, Draw! Doodle Recognition Challenge

Github中提供了两种类型的数据集,分别是 原始数据集预处理后的数据集
Google Cloud提供了数据集下载链接:quickdraw_dataset
在这里插入图片描述

🐶1.1 GitHub原始数据集

原始数据以按类别分隔的 ndjson 文件的形式提供,格式如下:

类型说明
key_id64位无符号整型所有图形的唯一标识符
word字符串类别
recognized布尔值该类别是否被游戏识别
timestamp日期时间绘制时间
countrycode字符串玩家所在位置的双字母国家/地区代码 (ISO 3166-1 alpha-2)
drawing字符串一个矢量绘制的 JSON 数组

每行包含一个绘图数据,下面是单个绘图的示例:

  { "key_id":"5891796615823360","word":"nose","countrycode":"AE","timestamp":"2017-03-01 20:41:36.70725 UTC","recognized":true,"drawing":[[[129,128,129,129,130,130,131,132,132,133,133,133,133,...]]]}

drawing字段格式如下:

[ [  // First stroke [x0, x1, x2, x3, ...],[y0, y1, y2, y3, ...],[t0, t1, t2, t3, ...]],[  // Second stroke[x0, x1, x2, x3, ...],[y0, y1, y2, y3, ...],[t0, t1, t2, t3, ...]],... // Additional strokes
]

其中xy是像素坐标,t是自第一个点以来的时间(以毫秒为单位)。由于用于显示和输入的设备不同,原始绘图可能具有截然不同的边界框和点数。

🐶1.2 GitHub预处理后的数据集

🦄1.2.1 简化的绘图文件(.ndjson)

简化了向量,删除了时序信息,并将数据定位和缩放为256x256区域。数据以ndjson格式导出,其元数据与raw格式相同。简化过程是:

  1. 将绘图与左上角对齐,最小值为 0。
  2. 统一缩放绘图,最大值为 255。
  3. 以 1 像素的间距对所有描边重新取样。
  4. 使用 epsilon 值为 2.0 的Ramer-Douglas-Peucker 算法简化所有笔画。

读取ndjson文件的代码如下:

# read_ndjson.py
import jsonwith open('aircraft carrier.ndjson', 'r') as file:for line in file:data = json.loads(line)key_id = data['key_id']drawing = data['drawing']# ……

读取aircraft carrier.ndjsondebug之后的输出结果如下图所示。可以看到第一行数据包含8个笔触。
在这里插入图片描述

🦄1.2.2 二进制文件(.bin)

简化的图纸和元数据也以自定义二进制格式提供,以实现高效的压缩和加载。

读取bin文件的代码如下:

# read_bin.py
import struct
from struct import unpackdef unpack_drawing(file_handle):key_id, = unpack('Q', file_handle.read(8))country_code, = unpack('2s', file_handle.read(2))recognized, = unpack('b', file_handle.read(1))timestamp, = unpack('I', file_handle.read(4))n_strokes, = unpack('H', file_handle.read(2))image = []for i in range(n_strokes):n_points, = unpack('H', file_handle.read(2))fmt = str(n_points) + 'B'x = unpack(fmt, file_handle.read(n_points))y = unpack(fmt, file_handle.read(n_points))image.append((x, y))return {'key_id': key_id,'country_code': country_code,'recognized': recognized,'timestamp': timestamp,'image': image}def unpack_drawings(filename):with open(filename, 'rb') as f:while True:try:yield unpack_drawing(f)except struct.error:breakfor drawing in unpack_drawings('nose.bin'):# do something with the drawingprint(drawing['country_code'])

🦄1.2.3 Numpy位图(.npy)

所有简化的绘图都已渲染为numpy格式的28x28灰度位图。这些图像是根据简化的数据生成的,但与绘图边界框的中心对齐,而不是与左上角对齐。

读取npy文件的代码如下:

# read_npy.py
import numpy as npdata_path = 'aircraft_carrier.npy'data = np.load(data_path)
print(data)

🐶1.3 Kaggle数据集

在Kaggle竞赛中,使用的数据集为340个类别。数据格式统一为csv表格数据。数据集中有5个文件:

  • sample_submission.csv - 正确格式的样本提交文件
  • test_raw.csv - 矢量格式的测试数据raw
  • test_simplified.csv - 矢量格式的测试数据simplified
  • train_raw.zip - 向量格式的训练数据;每个单词一个 CSV 文件raw
  • train_simplified.zip - 向量格式的训练数据;每个单词一个 CSV 文件simplified

注:csv文件的列titlendjson文件的键名一致。

😺二、数据集准备

本文将使用kaggle提供的train_simplified数据集。案例流程包含:

  1. 将所有类的csv格式文件保存为png图片格式;
  2. 对340个类别的png格式图片各抽取10000张用作后续实践;
  3. 对每个类别的10000张数据进行8:1:1的训练集、验证集、测试集的划分;
  4. 训练模型;
  5. 模型评估。

😺三、获取png格式图片

使用下面脚本可以将csv数据转为png图片格式保存。

# csv2png.py
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import os
from scipy import interpolate, misc
import matplotlib
matplotlib.use('Agg')input_dir = 'kaggle/train_simplified'
output_base_dir = 'datasets256'os.makedirs(output_base_dir, exist_ok=True)csv_files = [f for f in os.listdir(input_dir) if f.endswith('.csv')]    # Retrieve all CSV files from the folderskipped_files = []  # Record skipped filesfor csv_file in csv_files:csv_file_path = os.path.join(input_dir, csv_file)   # Build a complete file pathoutput_dir = os.path.join(output_base_dir, os.path.splitext(csv_file)[0])   # Build output directoryif os.path.exists(output_dir):      # Check if the output directory existsskipped_files.append(csv_file)print(f'The directory already exists, skip file: {csv_file}')continueos.makedirs(output_dir, exist_ok=True)data = pd.read_csv(csv_file_path)       # Read CSV filefor index, row in data.iterrows():  # Traverse each row of datadrawing = eval(row['drawing'])key_id = row['key_id']word = row['word']img = np.zeros((256, 256))      # Initialize imagefig = plt.figure(figsize=(256/96, 256/96), dpi=96)for stroke in drawing:      # Draw each strokestroke_x = stroke[0]stroke_y = stroke[1]x = np.array(stroke_x)y = np.array(stroke_y)np.interp((x + y) / 2, x, y)plt.plot(x, y, 'k')ax = plt.gca()ax.xaxis.set_ticks_position('top')ax.invert_yaxis()plt.axis('off')plt.savefig(os.path.join(output_dir, f'{word}-{key_id}.png'))plt.close(fig)print(f'Conversion completed: {csv_file} the {index:06d}image')print("The skipped files are:")
for file in skipped_files:print(file)

需要注意的是:绘图数据有5000万左右,处理时间非常久,建议多开几个脚本运行(PS:代码中添加了文件夹是否存在的判断语句,不用担心会重复写入)。也可以使用joblib库多线程加速(玩不好容易宕机,不建议)。

相关文件存储空间大小如下:

  • GitHub 预处理后的ndjson文件有23G
  • Kaggletrain_raw.zip文件有206G
  • Kaggletrain_simplified.zip文件有23G
  • Kaggletrain_simplified转为256*256大小的图片有470G

如果磁盘空间不足,进行png转化时可以选择128128大小或者6464大小。也可以保存单通道图像。

建议处理完毕之后使用下面的脚本检查一下有没有没处理的类别:

# check_class_num.py
import osfolder = 'datasets256'subfolders = [f.path for f in os.scandir(folder) if f.is_dir()]for subfolder in subfolders:    # Traverse each subfoldersfolder_name = os.path.basename(subfolder)   # Get the name of the subfoldersfiles = [f for f in os.scandir(subfolder) if f.is_file()]   # Retrieve all files in the subfoldersimage_count = sum(1 for f in files if f.name.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')))   # Calculate the number of imagesif image_count == 0:        # If the number of images is 0, print out the names of the subfolders and delete themprint(f"There are no images in the subfolders '{folder_name}', deleting them...")os.rmdir(subfolder)print(f"subfolders '{folder_name}' deleted")else:print(f"Number of images in subfolders: '{folder_name}' : {image_count}")

如果检查到有空文件夹,需要再运行csv2png.py的代码。

😺四、训练过程

🐶4.1 split_datasets.py

首先要划分数据集,原始数据为png图片格式数据集。

import os
import shutil
import randomoriginal_dataset_path = 'datasets256'     # Original dataset path
new_dataset_path = 'datasets'                       # Divide the dataset pathtrain_path = os.path.join(new_dataset_path, 'train')
val_path = os.path.join(new_dataset_path, 'val')
test_path = os.path.join(new_dataset_path, 'test')if not os.path.exists(train_path):os.makedirs(train_path)if not os.path.exists(val_path):os.makedirs(val_path)if not os.path.exists(test_path):os.makedirs(test_path)classes = os.listdir(original_dataset_path)     # Get all categoriesrandom.seed(42)for class_name in classes:      # Traverse each categorysrc_folder = os.path.join(original_dataset_path, class_name)    # Source folder path# Check if the folder for this category already exists under train, val, and testtrain_folder = os.path.join(train_path, class_name)val_folder = os.path.join(val_path, class_name)test_folder = os.path.join(test_path, class_name)# If the train, val, and test folders already exist, skip the folder creation sectionif os.path.exists(train_folder) and os.path.exists(val_folder) and os.path.exists(test_folder):# Check if the folder is emptyif os.listdir(train_folder) and os.listdir(val_folder) and os.listdir(test_folder):print(f"Category {class_name} already exists and is not empty, skip processing.")continue# create folderif not os.path.exists(train_folder):os.makedirs(train_folder)if not os.path.exists(val_folder):os.makedirs(val_folder)if not os.path.exists(test_folder):os.makedirs(test_folder)files = os.listdir(src_folder)      # Retrieve all file names under this categoryfiles = files[:10000]       # Only retrieve the first 10000 filesrandom.shuffle(files)       # Shuffle file listtotal_files = len(files)train_split_index = int(total_files * 0.8)val_split_index = int(total_files * 0.9)train_files = files[:train_split_index]val_files = files[train_split_index:val_split_index]test_files = files[val_split_index:]for file in train_files:src_file = os.path.join(src_folder, file)dst_file = os.path.join(train_folder, file)shutil.copy(src_file, dst_file)for file in val_files:src_file = os.path.join(src_folder, file)dst_file = os.path.join(val_folder, file)shutil.copy(src_file, dst_file)for file in test_files:src_file = os.path.join(src_folder, file)dst_file = os.path.join(test_folder, file)shutil.copy(src_file, dst_file)print("Dataset partitioning completed!")

代码运行完毕之后,datasets目录下面会出现三个文件夹,分别是trainvaltest

🐶4.2 option.py

定义后续我们需要的一些参数。

import argparsedef get_args():parser = argparse.ArgumentParser(description='all argument')parser.add_argument('--num_classes', type=int, default=340, help='image num classes')parser.add_argument('--loadsize', type=int, default=64, help='image size')parser.add_argument('--epochs', type=int, default=100, help='all epochs')parser.add_argument('--batch_size', type=int, default=1024, help='batch size')parser.add_argument('--lr', type=float, default=0.001, help='init lr')parser.add_argument('--use_lr_scheduler', type=bool, default=True, help='use lr scheduler')parser.add_argument('--dataset_train', type=str, default='./datasets/train', help='train path')parser.add_argument('--dataset_val', type=str, default="./datasets/val", help='val path')parser.add_argument('--dataset_test', type=str, default="./datasets/test", help='test path')parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='ckpt path')parser.add_argument('--tensorboard_dir', type=str, default='./tensorboard_dir', help='log path')parser.add_argument('--resume', type=bool, default=False, help='continue training')parser.add_argument('--resume_ckpt', type=str, default='./checkpoints/model_best.pth', help='choose breakpoint ckpt')parser.add_argument('--local-rank', type=int, default=-1, help='local rank')parser.add_argument('--use_mix_precision', type=bool, default=False, help='use mix pretrain')parser.add_argument('--test_img_path', type=str, default='datasets/test/zigzag/zigzag-4508464694951936.png', help='choose test image')parser.add_argument('--test_dir_path', type=str, default='./datasets/test', help='choose test path')return parser.parse_args()

由于后续将使用DDP单机多卡以及AMP策略进行训练,因此额外加入了local-rankuse_mix_precision参数。

🐶4.3 getdata.py

接下来定义数据管道。

import torch
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision import transforms
from option import get_args
opt = get_args()mean = [0.9367, 0.9404, 0.9405]
std = [0.1971, 0.1970, 0.1972]
def data_augmentation():data_transform = {'train': transforms.Compose([transforms.Resize((opt.loadsize, opt.loadsize)),transforms.ToTensor(),  # HWC -> CHWtransforms.Normalize(mean, std)]),'val': transforms.Compose([transforms.Resize((opt.loadsize, opt.loadsize)),transforms.ToTensor(),transforms.Normalize(mean, std)]),}return data_transformdef MyData():data_transform = data_augmentation()image_datasets = {'train': ImageFolder(opt.dataset_train, data_transform['train']),'val': ImageFolder(opt.dataset_val, data_transform['val']),}data_sampler = {'train': torch.utils.data.distributed.DistributedSampler(image_datasets['train']),'val': torch.utils.data.distributed.DistributedSampler(image_datasets['val']),}dataloaders = {'train': DataLoader(image_datasets['train'], batch_size=opt.batch_size, shuffle=False, num_workers=0, pin_memory=True, sampler=data_sampler['train']),'val': DataLoader(image_datasets['val'], batch_size=opt.batch_size, shuffle=False, num_workers=0, pin_memory=True, sampler=data_sampler['val'])}return dataloadersclass_names =['The Eiffel Tower', 'The Great Wall of China', 'The Mona Lisa', 'airplane', 'alarm clock', 'ambulance', 'angel', 'animal migration', 'ant', 'anvil', 'apple', 'arm', 'asparagus', 'axe', 'backpack', 'banana', 'bandage', 'barn', 'baseball', 'baseball bat', 'basket', 'basketball', 'bat', 'bathtub', 'beach', 'bear', 'beard', 'bed', 'bee', 'belt', 'bench', 'bicycle', 'binoculars', 'bird', 'birthday cake', 'blackberry', 'blueberry', 'book', 'boomerang', 'bottlecap', 'bowtie', 'bracelet', 'brain', 'bread', 'bridge', 'broccoli', 'broom', 'bucket', 'bulldozer', 'bus', 'bush', 'butterfly', 'cactus', 'cake', 'calculator', 'calendar', 'camel', 'camera', 'camouflage', 'campfire', 'candle', 'cannon', 'canoe', 'car', 'carrot', 'castle', 'cat', 'ceiling fan', 'cell phone', 'cello', 'chair', 'chandelier', 'church', 'circle', 'clarinet', 'clock', 'cloud', 'coffee cup', 'compass', 'computer', 'cookie', 'cooler', 'couch', 'cow', 'crab', 'crayon', 'crocodile', 'crown', 'cruise ship', 'cup', 'diamond', 'dishwasher', 'diving board', 'dog', 'dolphin', 'donut', 'door', 'dragon', 'dresser', 'drill', 'drums', 'duck', 'dumbbell', 'ear', 'elbow', 'elephant', 'envelope', 'eraser', 'eye', 'eyeglasses', 'face', 'fan', 'feather', 'fence', 'finger', 'fire hydrant', 'fireplace', 'firetruck', 'fish', 'flamingo', 'flashlight', 'flip flops', 'floor lamp', 'flower', 'flying saucer', 'foot', 'fork', 'frog', 'frying pan', 'garden', 'garden hose', 'giraffe', 'goatee', 'golf club', 'grapes', 'grass', 'guitar', 'hamburger', 'hammer', 'hand', 'harp', 'hat', 'headphones', 'hedgehog', 'helicopter', 'helmet', 'hexagon', 'hockey puck', 'hockey stick', 'horse', 'hospital', 'hot air balloon', 'hot dog', 'hot tub', 'hourglass', 'house', 'house plant', 'hurricane', 'ice cream', 'jacket', 'jail', 'kangaroo', 'key', 'keyboard', 'knee', 'ladder', 'lantern', 'laptop', 'leaf', 'leg', 'light bulb', 'lighthouse', 'lightning', 'line', 'lion', 'lipstick', 'lobster', 'lollipop', 'mailbox', 'map', 'marker', 'matches', 'megaphone', 'mermaid', 'microphone', 'microwave', 'monkey', 'moon', 'mosquito', 'motorbike', 'mountain', 'mouse', 'moustache', 'mouth', 'mug', 'mushroom', 'nail', 'necklace', 'nose', 'ocean', 'octagon', 'octopus', 'onion', 'oven', 'owl', 'paint can', 'paintbrush', 'palm tree', 'panda', 'pants', 'paper clip', 'parachute', 'parrot', 'passport', 'peanut', 'pear', 'peas', 'pencil', 'penguin', 'piano', 'pickup truck', 'picture frame', 'pig', 'pillow', 'pineapple', 'pizza', 'pliers', 'police car', 'pond', 'pool', 'popsicle', 'postcard', 'potato', 'power outlet', 'purse', 'rabbit', 'raccoon', 'radio', 'rain', 'rainbow', 'rake', 'remote control', 'rhinoceros', 'river', 'roller coaster', 'rollerskates', 'sailboat', 'sandwich', 'saw', 'saxophone', 'school bus', 'scissors', 'scorpion', 'screwdriver', 'sea turtle', 'see saw', 'shark', 'sheep', 'shoe', 'shorts', 'shovel', 'sink', 'skateboard', 'skull', 'skyscraper', 'sleeping bag', 'smiley face', 'snail', 'snake', 'snorkel', 'snowflake', 'snowman', 'soccer ball', 'sock', 'speedboat', 'spider', 'spoon', 'spreadsheet', 'square', 'squiggle', 'squirrel', 'stairs', 'star', 'steak', 'stereo', 'stethoscope', 'stitches', 'stop sign', 'stove', 'strawberry', 'streetlight', 'string bean', 'submarine', 'suitcase', 'sun', 'swan', 'sweater', 'swing set', 'sword', 't-shirt', 'table', 'teapot', 'teddy-bear', 'telephone', 'television', 'tennis racquet', 'tent', 'tiger', 'toaster', 'toe', 'toilet', 'tooth', 'toothbrush', 'toothpaste', 'tornado', 'tractor', 'traffic light', 'train', 'tree', 'triangle', 'trombone', 'truck', 'trumpet', 'umbrella', 'underwear', 'van', 'vase', 'violin', 'washing machine', 'watermelon', 'waterslide', 'whale', 'wheel', 'windmill', 'wine bottle', 'wine glass', 'wristwatch', 'yoga', 'zebra', 'zigzag'
]if __name__ == '__main__':mena_std_transform = transforms.Compose([transforms.ToTensor()])dataset = ImageFolder(opt.dataset_val, transform=mena_std_transform)print(dataset.class_to_idx)		# Index for each category

🐶4.4 model.py

定义模型,这里使用mobilenet的small版本。需要将模型的classifier层的输出改为类别数量。
可以使用更多优质的模型对数据集进行训练,例如shufflenetsqueezenet等。

import torch.nn as nn
from torchvision.models import mobilenet_v3_small
from torchsummary import summary
from option import get_args
opt = get_args()def CustomMobileNetV3():model = mobilenet_v3_small(weights='MobileNet_V3_Small_Weights.IMAGENET1K_V1')model.classifier[-1] = nn.Linear(model.classifier[-1].in_features, opt.num_classes)return modelif __name__ == '__main__':model = CustomMobileNetV3()print(model)print(summary(model.to(opt.device), (3, opt.loadsize, opt.loadsize), opt.batch_size))

模型结构如下:

----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Conv2d-1         [1024, 16, 32, 32]             432BatchNorm2d-2         [1024, 16, 32, 32]              32Hardswish-3         [1024, 16, 32, 32]               0Conv2d-4         [1024, 16, 16, 16]             144BatchNorm2d-5         [1024, 16, 16, 16]              32ReLU-6         [1024, 16, 16, 16]               0AdaptiveAvgPool2d-7           [1024, 16, 1, 1]               0Conv2d-8            [1024, 8, 1, 1]             136ReLU-9            [1024, 8, 1, 1]               0Conv2d-10           [1024, 16, 1, 1]             144Hardsigmoid-11           [1024, 16, 1, 1]               0
SqueezeExcitation-12         [1024, 16, 16, 16]               0Conv2d-13         [1024, 16, 16, 16]             256BatchNorm2d-14         [1024, 16, 16, 16]              32InvertedResidual-15         [1024, 16, 16, 16]               0Conv2d-16         [1024, 72, 16, 16]           1,152BatchNorm2d-17         [1024, 72, 16, 16]             144ReLU-18         [1024, 72, 16, 16]               0Conv2d-19           [1024, 72, 8, 8]             648BatchNorm2d-20           [1024, 72, 8, 8]             144ReLU-21           [1024, 72, 8, 8]               0Conv2d-22           [1024, 24, 8, 8]           1,728BatchNorm2d-23           [1024, 24, 8, 8]              48InvertedResidual-24           [1024, 24, 8, 8]               0Conv2d-25           [1024, 88, 8, 8]           2,112BatchNorm2d-26           [1024, 88, 8, 8]             176ReLU-27           [1024, 88, 8, 8]               0Conv2d-28           [1024, 88, 8, 8]             792BatchNorm2d-29           [1024, 88, 8, 8]             176ReLU-30           [1024, 88, 8, 8]               0Conv2d-31           [1024, 24, 8, 8]           2,112BatchNorm2d-32           [1024, 24, 8, 8]              48InvertedResidual-33           [1024, 24, 8, 8]               0Conv2d-34           [1024, 96, 8, 8]           2,304BatchNorm2d-35           [1024, 96, 8, 8]             192Hardswish-36           [1024, 96, 8, 8]               0Conv2d-37           [1024, 96, 4, 4]           2,400BatchNorm2d-38           [1024, 96, 4, 4]             192Hardswish-39           [1024, 96, 4, 4]               0
AdaptiveAvgPool2d-40           [1024, 96, 1, 1]               0Conv2d-41           [1024, 24, 1, 1]           2,328ReLU-42           [1024, 24, 1, 1]               0Conv2d-43           [1024, 96, 1, 1]           2,400Hardsigmoid-44           [1024, 96, 1, 1]               0
SqueezeExcitation-45           [1024, 96, 4, 4]               0Conv2d-46           [1024, 40, 4, 4]           3,840BatchNorm2d-47           [1024, 40, 4, 4]              80InvertedResidual-48           [1024, 40, 4, 4]               0Conv2d-49          [1024, 240, 4, 4]           9,600BatchNorm2d-50          [1024, 240, 4, 4]             480Hardswish-51          [1024, 240, 4, 4]               0Conv2d-52          [1024, 240, 4, 4]           6,000BatchNorm2d-53          [1024, 240, 4, 4]             480Hardswish-54          [1024, 240, 4, 4]               0
AdaptiveAvgPool2d-55          [1024, 240, 1, 1]               0Conv2d-56           [1024, 64, 1, 1]          15,424ReLU-57           [1024, 64, 1, 1]               0Conv2d-58          [1024, 240, 1, 1]          15,600Hardsigmoid-59          [1024, 240, 1, 1]               0
SqueezeExcitation-60          [1024, 240, 4, 4]               0Conv2d-61           [1024, 40, 4, 4]           9,600BatchNorm2d-62           [1024, 40, 4, 4]              80InvertedResidual-63           [1024, 40, 4, 4]               0Conv2d-64          [1024, 240, 4, 4]           9,600BatchNorm2d-65          [1024, 240, 4, 4]             480Hardswish-66          [1024, 240, 4, 4]               0Conv2d-67          [1024, 240, 4, 4]           6,000BatchNorm2d-68          [1024, 240, 4, 4]             480Hardswish-69          [1024, 240, 4, 4]               0
AdaptiveAvgPool2d-70          [1024, 240, 1, 1]               0Conv2d-71           [1024, 64, 1, 1]          15,424ReLU-72           [1024, 64, 1, 1]               0Conv2d-73          [1024, 240, 1, 1]          15,600Hardsigmoid-74          [1024, 240, 1, 1]               0
SqueezeExcitation-75          [1024, 240, 4, 4]               0Conv2d-76           [1024, 40, 4, 4]           9,600BatchNorm2d-77           [1024, 40, 4, 4]              80InvertedResidual-78           [1024, 40, 4, 4]               0Conv2d-79          [1024, 120, 4, 4]           4,800BatchNorm2d-80          [1024, 120, 4, 4]             240Hardswish-81          [1024, 120, 4, 4]               0Conv2d-82          [1024, 120, 4, 4]           3,000BatchNorm2d-83          [1024, 120, 4, 4]             240Hardswish-84          [1024, 120, 4, 4]               0
AdaptiveAvgPool2d-85          [1024, 120, 1, 1]               0Conv2d-86           [1024, 32, 1, 1]           3,872ReLU-87           [1024, 32, 1, 1]               0Conv2d-88          [1024, 120, 1, 1]           3,960Hardsigmoid-89          [1024, 120, 1, 1]               0
SqueezeExcitation-90          [1024, 120, 4, 4]               0Conv2d-91           [1024, 48, 4, 4]           5,760BatchNorm2d-92           [1024, 48, 4, 4]              96InvertedResidual-93           [1024, 48, 4, 4]               0Conv2d-94          [1024, 144, 4, 4]           6,912BatchNorm2d-95          [1024, 144, 4, 4]             288Hardswish-96          [1024, 144, 4, 4]               0Conv2d-97          [1024, 144, 4, 4]           3,600BatchNorm2d-98          [1024, 144, 4, 4]             288Hardswish-99          [1024, 144, 4, 4]               0
AdaptiveAvgPool2d-100          [1024, 144, 1, 1]               0Conv2d-101           [1024, 40, 1, 1]           5,800ReLU-102           [1024, 40, 1, 1]               0Conv2d-103          [1024, 144, 1, 1]           5,904Hardsigmoid-104          [1024, 144, 1, 1]               0
SqueezeExcitation-105          [1024, 144, 4, 4]               0Conv2d-106           [1024, 48, 4, 4]           6,912BatchNorm2d-107           [1024, 48, 4, 4]              96
InvertedResidual-108           [1024, 48, 4, 4]               0Conv2d-109          [1024, 288, 4, 4]          13,824BatchNorm2d-110          [1024, 288, 4, 4]             576Hardswish-111          [1024, 288, 4, 4]               0Conv2d-112          [1024, 288, 2, 2]           7,200BatchNorm2d-113          [1024, 288, 2, 2]             576Hardswish-114          [1024, 288, 2, 2]               0
AdaptiveAvgPool2d-115          [1024, 288, 1, 1]               0Conv2d-116           [1024, 72, 1, 1]          20,808ReLU-117           [1024, 72, 1, 1]               0Conv2d-118          [1024, 288, 1, 1]          21,024Hardsigmoid-119          [1024, 288, 1, 1]               0
SqueezeExcitation-120          [1024, 288, 2, 2]               0Conv2d-121           [1024, 96, 2, 2]          27,648BatchNorm2d-122           [1024, 96, 2, 2]             192
InvertedResidual-123           [1024, 96, 2, 2]               0Conv2d-124          [1024, 576, 2, 2]          55,296BatchNorm2d-125          [1024, 576, 2, 2]           1,152Hardswish-126          [1024, 576, 2, 2]               0Conv2d-127          [1024, 576, 2, 2]          14,400BatchNorm2d-128          [1024, 576, 2, 2]           1,152Hardswish-129          [1024, 576, 2, 2]               0
AdaptiveAvgPool2d-130          [1024, 576, 1, 1]               0Conv2d-131          [1024, 144, 1, 1]          83,088ReLU-132          [1024, 144, 1, 1]               0Conv2d-133          [1024, 576, 1, 1]          83,520Hardsigmoid-134          [1024, 576, 1, 1]               0
SqueezeExcitation-135          [1024, 576, 2, 2]               0Conv2d-136           [1024, 96, 2, 2]          55,296BatchNorm2d-137           [1024, 96, 2, 2]             192
InvertedResidual-138           [1024, 96, 2, 2]               0Conv2d-139          [1024, 576, 2, 2]          55,296BatchNorm2d-140          [1024, 576, 2, 2]           1,152Hardswish-141          [1024, 576, 2, 2]               0Conv2d-142          [1024, 576, 2, 2]          14,400BatchNorm2d-143          [1024, 576, 2, 2]           1,152Hardswish-144          [1024, 576, 2, 2]               0
AdaptiveAvgPool2d-145          [1024, 576, 1, 1]               0Conv2d-146          [1024, 144, 1, 1]          83,088ReLU-147          [1024, 144, 1, 1]               0Conv2d-148          [1024, 576, 1, 1]          83,520Hardsigmoid-149          [1024, 576, 1, 1]               0
SqueezeExcitation-150          [1024, 576, 2, 2]               0Conv2d-151           [1024, 96, 2, 2]          55,296BatchNorm2d-152           [1024, 96, 2, 2]             192
InvertedResidual-153           [1024, 96, 2, 2]               0Conv2d-154          [1024, 576, 2, 2]          55,296BatchNorm2d-155          [1024, 576, 2, 2]           1,152Hardswish-156          [1024, 576, 2, 2]               0
AdaptiveAvgPool2d-157          [1024, 576, 1, 1]               0Linear-158               [1024, 1024]         590,848Hardswish-159               [1024, 1024]               0Dropout-160               [1024, 1024]               0Linear-161                [1024, 340]         348,500
================================================================
Total params: 1,866,356
Trainable params: 1,866,356
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 48.00
Forward/backward pass size (MB): 2979.22
Params size (MB): 7.12
Estimated Total Size (MB): 3034.34
----------------------------------------------------------------

🐶4.5 train-DDP.py

需要注意的是,train-DDP.py中包含许多训练策略:

  • DDP分布式训练(单机双卡);
  • AMP混合精度训练;
  • 学习率衰减;
  • 早停;
  • 断点继续训练。
# python -m torch.distributed.launch --nproc_per_node=2 --nnodes=1 --node_rank=0 --master_addr="192.168.8.89" --master_port=12345 train-DDP.py --use_mix_precision True
# Watch Training Log:tensorboard --logdir=tensorboard_dir
from tqdm import tqdm
import torch
import torch.nn.parallel
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
import time
import os
import torch.optim
import torch.utils.data
import torch.nn as nn
from collections import OrderedDict
from model import CustomMobileNetV3
from getdata import MyData
from torch.cuda.amp import GradScaler
from option import get_args
opt = get_args()
dist.init_process_group(backend='nccl', init_method='env://')os.makedirs(opt.checkpoints, exist_ok=True)def train(gpu):rank = dist.get_rank()model = CustomMobileNetV3()model.cuda(gpu)criterion = nn.CrossEntropyLoss().to(gpu)optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)model = nn.SyncBatchNorm.convert_sync_batchnorm(model)model = nn.parallel.DistributedDataParallel(model, device_ids=[gpu])scaler = GradScaler(enabled=opt.use_mix_precision)  dataloaders = MyData()train_loader = dataloaders['train']test_loader = dataloaders['val']if opt.use_lr_scheduler:scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.8)start_time = time.time()best_val_acc = 0.0no_improve_epochs = 0early_stopping_patience = 6  # Early Stopping Patience"""breakckpt resume"""if opt.resume:checkpoint = torch.load(opt.resume_ckpt)print('Loading checkpoint from:', opt.resume_ckpt)new_state_dict = OrderedDict()      # Create a new ordered dictionary and remove prefixesfor k, v in checkpoint['model'].items():name = k[7:]                    # Remove 'module.' To match the original model definitionnew_state_dict[name] = vmodel.load_state_dict(new_state_dict, strict=False)     # Load a new state dictionaryoptimizer.load_state_dict(checkpoint['optimizer'])start_epoch = checkpoint['epoch']                       # Set the starting epochif opt.use_lr_scheduler:scheduler.load_state_dict(checkpoint['scheduler'])else:start_epoch = 0for epoch in range(start_epoch + 1, opt.epochs):tqdm_trainloader = tqdm(train_loader, desc=f'Epoch {epoch}')running_loss, running_correct_top1, running_correct_top3, running_correct_top5 = 0.0, 0.0, 0.0, 0.0total_samples = 0for i, (images, target) in enumerate(tqdm_trainloader if rank == 0 else train_loader, 0):images = images.to(gpu)target = target.to(gpu)with torch.cuda.amp.autocast(enabled=opt.use_mix_precision):output = model(images)loss = criterion(output, target)optimizer.zero_grad()scaler.scale(loss).backward()scaler.step(optimizer)scaler.update() running_loss += loss.item() * images.size(0)_, predicted = torch.max(output.data, 1)running_correct_top1  += (predicted == target).sum().item()_, predicted_top3 = torch.topk(output.data, 3, dim=1)_, predicted_top5 = torch.topk(output.data, 5, dim=1)running_correct_top3 += (predicted_top3[:, :3] == target.unsqueeze(1).expand_as(predicted_top3)).sum().item()running_correct_top5 += (predicted_top5[:, :5] == target.unsqueeze(1).expand_as(predicted_top5)).sum().item()total_samples += target.size(0)state = {'epoch': epoch,'model': model.module.state_dict(),'optimizer': optimizer.state_dict(),'scheduler': scheduler.state_dict()}if rank == 0:current_lr = scheduler.get_last_lr()[0] if opt.use_lr_scheduler else opt.lrprint(f'[Epoch {epoch}]  'f'[Train Loss: {running_loss / len(train_loader.dataset):.6f}]  'f'[Train Top-1 Acc: {running_correct_top1 / len(train_loader.dataset):.6f}]  'f'[Train Top-3 Acc: {running_correct_top3 / len(train_loader.dataset):.6f}]  'f'[Train Top-5 Acc: {running_correct_top5 / len(train_loader.dataset):.6f}]  'f'[Learning Rate: {current_lr:.6f}]  'f'[Time: {time.time() - start_time:.6f} seconds]')writer.add_scalar('Train/Loss', running_loss / len(train_loader.dataset), epoch)writer.add_scalar('Train/Top-1 Accuracy', running_correct_top1 / len(train_loader.dataset), epoch)writer.add_scalar('Train/Top-3 Accuracy', running_correct_top3 / len(train_loader.dataset), epoch)writer.add_scalar('Train/Top-5 Accuracy', running_correct_top5 / len(train_loader.dataset), epoch)writer.add_scalar('Train/Learning Rate', current_lr, epoch)torch.save(state, f'{opt.checkpoints}model_epoch_{epoch}.pth')# dist.barrier()tqdm_trainloader.close()if opt.use_lr_scheduler:    # Learning-rate Schedulerscheduler.step()acc_top1 = valid(test_loader, model, epoch, gpu, rank)if acc_top1 is not None:if acc_top1 > best_val_acc:best_val_acc = acc_top1no_improve_epochs = 0torch.save(state, f'{opt.checkpoints}/model_best.pth')else:no_improve_epochs += 1if no_improve_epochs >= early_stopping_patience:print(f'Early stopping triggered after {early_stopping_patience} epochs without improvement.')breakelse:print("Warning: acc_top1 is None, skipping this epoch.")dist.destroy_process_group()def valid(val_loader, model, epoch, gpu, rank):model.eval()correct_top1, correct_top3, correct_top5, total = torch.tensor(0.).to(gpu), torch.tensor(0.).to(gpu), torch.tensor(0.).to(gpu), torch.tensor(0.).to(gpu)with torch.no_grad():tqdm_valloader = tqdm(val_loader, desc=f'Epoch {epoch}')for i, (images, target) in enumerate(tqdm_valloader, 0) :images = images.to(gpu)target = target.to(gpu)output = model(images)total += target.size(0)correct_top1  += (output.argmax(1) == target).type(torch.float).sum()_, predicted_top3 = torch.topk(output, 3, dim=1)_, predicted_top5 = torch.topk(output, 5, dim=1)correct_top3 += (predicted_top3[:, :3] == target.unsqueeze(1).expand_as(predicted_top3)).sum().item()correct_top5 += (predicted_top5[:, :5] == target.unsqueeze(1).expand_as(predicted_top5)).sum().item()dist.reduce(total, 0, op=dist.ReduceOp.SUM)     # Group communication reduce operation (change to allreduce if Gloo)dist.reduce(correct_top1, 0, op=dist.ReduceOp.SUM)dist.reduce(correct_top3, 0, op=dist.ReduceOp.SUM)dist.reduce(correct_top5, 0, op=dist.ReduceOp.SUM)if rank == 0:print(f'[Epoch {epoch}]  'f'[Val Top-1 Acc: {correct_top1 / total:.6f}]  'f'[Val Top-3 Acc: {correct_top3 / total:.6f}]  'f'[Val Top-5 Acc: {correct_top5 / total:.6f}]')writer.add_scalar('Validation/Top-1 Accuracy', correct_top1 / total, epoch)writer.add_scalar('Validation/Top-3 Accuracy', correct_top3 / total, epoch)writer.add_scalar('Validation/Top-5 Accuracy', correct_top5 / total, epoch)return float(correct_top1 / total)  # Return top 1 precisiontqdm_valloader.close()def main():train(opt.local_rank)if __name__ == '__main__':writer = SummaryWriter(log_dir=opt.tensorboard_dir)main()writer.close()

在终端使用下面命令可以启动多卡分布式训练:

python -m torch.distributed.launch --nproc_per_node=2 --nnodes=1 --node_rank=0 --master_addr="192.168.8.89" --master_port=12345 train-DDP.py --use_mix_precision True

相关参数含义如下:

  • nproc_per_node:显卡数量
  • nnodes:机器数量
  • node_rank:机器编号
  • master_addr:机器ip地址
  • master_port:机器端口

如果使用nohup启动训练会存在一个bug

W0914 18:33:15.081479 140031432897728 torch/distributed/elastic/agent/server/api.py:741] Received Signals.SIGHUP death signal, shutting down workers
W0914 18:33:15.085310 140031432897728 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1685186 closing signal SIGHUP
W0914 18:33:15.085644 140031432897728 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1685192 closing signal SIGHUP

具体原因可以参考pytorch官方的discuss:DDP Error: torch.distributed.elastic.agent.server.api:Received 1 death signal, shutting down workers

我们可以使用tmux解决这个问题。

  1. 安装tmuxsudo apt-get install tmux
  2. 新建会话:tmux new -s train-DDP(会话名称自定义)
  3. 激活虚拟环境:conda activate pytorch(虚拟环境以实际需要为准)
  4. 启动训练任务:python -m torch.distributed.launch --nproc_per_node=2 --nnodes=1 --node_rank=0 --master_addr="192.168.8.89" --master_port=12345 train-DDP.py --use_mix_precision True

tmux常用命令如下:

  • 查看当前全部的tmux会话:tmux ls
  • 新建会话:tmux new -s 会话名字
  • 重新进入会话:tmux attach -t 会话名字
  • kill会话:tmux kill-session -t 会话名字

本文训练过程中的日志如下图所示:
在这里插入图片描述
在这里插入图片描述
模型在第11轮发生早停。

🐶4.6 model_transfer.py

代码作用是将pth模型转为移动端的ptl格式和onnx格式,方便模型端侧部署。

from torch.utils.mobile_optimizer import optimize_for_mobile
import torch
from model import CustomMobileNetV3
import onnx
from onnxsim import simplify
from torch.autograd import Variable
from option import get_args
opt = get_args()model = CustomMobileNetV3()
model.load_state_dict(torch.load(f'{opt.checkpoints}model_best.pth', map_location='cpu')['model'])
model.eval()
print("Model loaded successfully.")"""Save .pth format model"""
torch.save(model, f'{opt.checkpoints}/model.pth')"""Save .ptl format model"""
example = torch.rand(1, 3, 64, 64)
traced_script_module = torch.jit.trace(model, example)
traced_script_module_optimized = optimize_for_mobile(traced_script_module)
traced_script_module_optimized._save_for_lite_interpreter(f'{opt.checkpoints}model.ptl')"""Save .onnx format model"""
input_name = ['input']
output_name = ['output']
input = Variable(torch.randn(1, 3, opt.loadsize, opt.loadsize))
torch.onnx.export(model, input, f'{opt.checkpoints}model.onnx', input_names=input_name, output_names=output_name, verbose=True)
onnx.save(onnx.shape_inference.infer_shapes(onnx.load(f'{opt.checkpoints}model.onnx')), f'{opt.checkpoints}model.onnx')   # Perform shape judgment
# simplified model
model_onnx = onnx.load(f'{opt.checkpoints}model.onnx')
model_simplified, check = simplify(model_onnx)
assert check, "Simplified ONNX model could not be validated"
onnx.save(model_simplified, f'{opt.checkpoints}model_simplified.onnx')

🐶4.7 evaluate.py

代码定义了三个函数:

  • evaluate_image_single:对单张图像进行预测
  • evaluate_image_dir:对文件夹图像进行预测
  • evaluate_onnx_model:onnx模型对图像进行预测

代码提供了多个可视化图像与评估指标。包括 混淆矩阵、F1score 等。

from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision import transforms
import torch.nn.functional as F
import torch.utils.data
import onnxruntime
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report, confusion_matrix, roc_curve, auc
from tqdm import tqdm
from getdata import mean, std, class_names
from option import get_args
opt = get_args()
device = 'cuda:1'"""Predicting a single image"""
def evaluate_image_single(img_path, transform_test, model, class_names, top_k):image = Image.open(img_path).convert('RGB')img = transform_test(image).to(device)img = img.unsqueeze_(0)out = model(img)pred_softmax = F.softmax(out, dim=1)top_n, top_n_indices = torch.topk(pred_softmax, top_k)confs = top_n[0].cpu().detach().numpy().tolist()class_names_top = [class_names[i] for i in top_n_indices[0]]for i in range(top_k):print(f'Pre: {class_names_top[i]}   Conf: {confs[i]:.3f}')confs_max = confs[0]plt.figure(figsize=(10, 5))plt.subplot(1, 2, 1)plt.axis('off')plt.title(f'Pre: {class_names_top[0]}   Conf: {confs_max:.3f}')plt.imshow(image)sorted_pairs = sorted(zip(class_names_top, confs), key=lambda x: x[1], reverse=True)sorted_class_names_top, sorted_confs = zip(*sorted_pairs)plt.subplot(1, 2, 2)bars = plt.bar(sorted_class_names_top, sorted_confs, color='lightcoral')plt.xlabel('Class Names')plt.ylabel('Confidence')plt.title('Top 5 Predictions (Descending Order)')plt.xticks(rotation=45)plt.ylim(0, 1)plt.tight_layout()for bar, conf in zip(bars, sorted_confs):yval = bar.get_height()plt.text(bar.get_x() + bar.get_width()/2, yval + 0.01, f'{conf:.3f}', ha='center', va='bottom')plt.savefig('predict_image_with_bars.jpg')"""Predicting folder images"""
def evaluate_image_dir(model, dataloader, class_names):model.eval()all_preds = []all_labels = []correct_top1, correct_top3, correct_top5, total = torch.tensor(0.).to(device), torch.tensor(0.).to(device), torch.tensor(0.).to(device), torch.tensor(0.).to(device)with torch.no_grad():for images, labels in tqdm(dataloader, desc="Evaluating"):images = images.to(device)labels = labels.to(device)outputs = model(images)total += labels.size(0)correct_top1  += (outputs.argmax(1) == labels).type(torch.float).sum()_, predicted_top3 = torch.topk(outputs, 3, dim=1)_, predicted_top5 = torch.topk(outputs, 5, dim=1)correct_top3 += (predicted_top3[:, :3] == labels.unsqueeze(1).expand_as(predicted_top3)).sum().item()correct_top5 += (predicted_top5[:, :5] == labels.unsqueeze(1).expand_as(predicted_top5)).sum().item()_, preds = torch.max(outputs, 1)all_preds.extend(preds)all_labels.extend(labels)all_preds = torch.tensor(all_preds)all_labels = torch.tensor(all_labels)top1 = correct_top1 / totaltop3 = correct_top3 / totaltop5 = correct_top5 / totalprint(f"Top-1 Accuracy: {top1:.4f}")print(f"Top-3 Accuracy: {top3:.4f}")print(f"Top-5 Accuracy: {top5:.4f}")accuracy = accuracy_score(all_labels.cpu().numpy(), all_preds.cpu().numpy())precision = precision_score(all_labels.cpu().numpy(), all_preds.cpu().numpy(), average='macro')recall = recall_score(all_labels.cpu().numpy(), all_preds.cpu().numpy(), average='macro')f1 = f1_score(all_labels.cpu().numpy(), all_preds.cpu().numpy(), average='macro')cm = confusion_matrix(all_labels.cpu().numpy(), all_preds.cpu().numpy())report = classification_report(all_labels.cpu().numpy(), all_preds.cpu().numpy(), target_names=class_names)print(f'Accuracy: {accuracy:.4f}')print(f'Precision: {precision:.4f}')print(f'Recall: {recall:.4f}')print(f'F1 Score: {f1:.4f}')print(report)plt.figure(figsize=(100, 100))sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=class_names, yticklabels=class_names, annot_kws={"size": 8})plt.xticks(rotation=90) plt.yticks(rotation=0)  plt.xlabel('Predicted Label')plt.ylabel('True Label')plt.title('Confusion Matrix')plt.savefig('confusion_matrix.jpg')"""Using .onnx model to predict images"""
def evaluate_onnx_model(img_path, data_transform, onnx_model_path, class_names, top_k=5):ort_session = onnxruntime.InferenceSession(onnx_model_path)img_pil = Image.open(img_path).convert('RGB')input_img = data_transform(img_pil)input_tensor = input_img.unsqueeze(0).numpy()ort_inputs = {'input': input_tensor}out = ort_session.run(['output'], ort_inputs)[0]def softmax(x):return np.exp(x) / np.sum(np.exp(x), axis=1, keepdims=True)prob_dist = softmax(out)result_dict = {label: float(prob_dist[0][i]) for i, label in enumerate(class_names)}result_dict = dict(sorted(result_dict.items(), key=lambda item: item[1], reverse=True))for key, value in list(result_dict.items())[:top_k]:print(f'Pre: {key}   Conf: {value:.3f}')confs_max = list(result_dict.values())[0]class_names_top = list(result_dict.keys())plt.figure(figsize=(10, 5))plt.subplot(1, 2, 1)plt.axis('off')plt.title(f'Pre: {class_names_top[0]}   Conf: {confs_max:.3f}')plt.imshow(img_pil)plt.subplot(1, 2, 2)bars = plt.bar(class_names_top[:top_k], list(result_dict.values())[:top_k], color='lightcoral')plt.xlabel('Class Names')plt.ylabel('Confidence')plt.title('Top 5 Predictions (Descending Order)')plt.xticks(rotation=45)plt.ylim(0, 1)plt.tight_layout()for bar, conf in zip(bars, list(result_dict.values())[:top_k]):yval = bar.get_height()plt.text(bar.get_x() + bar.get_width()/2, yval + 0.01, f'{conf:.3f}', ha='center', va='bottom')plt.savefig('predict_image_with_bars.jpg')if __name__ == '__main__':data_transform = transforms.Compose([transforms.Resize((opt.loadsize, opt.loadsize)), transforms.ToTensor(),transforms.Normalize(mean, std)])image_datasets = ImageFolder(opt.dataset_test, data_transform)dataloaders = DataLoader(image_datasets, batch_size=512, shuffle=True)ptl_model_path = opt.checkpoints + 'model.ptl'pth_model_path = opt.checkpoints + 'model.pth'onnx_model_path = opt.checkpoints + 'model.onnx'ptl_model = torch.jit.load(ptl_model_path).to(device)pth_model = torch.load(pth_model_path).to(device)evaluate_image_single(opt.test_img_path, data_transform, pth_model, class_names, top_k=5)     # Predicting a single image# evaluate_image_dir(pth_model, dataloaders, class_names)     # Predicting folder images# evaluate_onnx_model(opt.test_img_path, data_transform, onnx_model_path, class_names, top_k=5)   # Predicting a single image

使用evaluate_image_single函数对datasets/test/zigzag/zigzag-4508464694951936.png图片进行预测,结果如下:
在这里插入图片描述
使用evaluate_image_dir函数对datasets/test路径内的图像进行预测,结果如下:

Top-1 Accuracy: 0.6833
Top-3 Accuracy: 0.8521
Top-5 Accuracy: 0.8933
Accuracy: 0.6833
Precision: 0.6875
Recall: 0.6833
F1 Score: 0.6817
                         precision    recall  f1-score   supportThe Eiffel Tower       0.83      0.88      0.85      1000
The Great Wall of China       0.47      0.36      0.41      1000The Mona Lisa       0.68      0.86      0.76      1000airplane       0.83      0.74      0.78      1000alarm clock       0.76      0.76      0.76      1000ambulance       0.70      0.65      0.67      1000angel       0.87      0.78      0.82      1000animal migration       0.47      0.66      0.55      1000ant       0.77      0.74      0.75      1000anvil       0.80      0.66      0.72      1000apple       0.82      0.85      0.83      1000arm       0.74      0.69      0.71      1000asparagus       0.54      0.44      0.48      1000axe       0.69      0.67      0.68      1000backpack       0.61      0.75      0.67      1000banana       0.68      0.72      0.70      1000bandage       0.83      0.71      0.77      1000barn       0.66      0.68      0.67      1000baseball       0.77      0.71      0.74      1000baseball bat       0.75      0.73      0.74      1000basket       0.71      0.62      0.66      1000basketball       0.62      0.72      0.66      1000bat       0.79      0.62      0.69      1000bathtub       0.60      0.64      0.62      1000beach       0.58      0.65      0.61      1000bear       0.46      0.31      0.37      1000beard       0.56      0.73      0.63      1000bed       0.80      0.67      0.73      1000bee       0.82      0.74      0.78      1000belt       0.78      0.55      0.64      1000bench       0.59      0.53      0.56      1000bicycle       0.73      0.72      0.72      1000binoculars       0.74      0.77      0.76      1000bird       0.47      0.43      0.45      1000birthday cake       0.52      0.64      0.57      1000blackberry       0.46      0.42      0.44      1000blueberry       0.58      0.47      0.52      1000book       0.72      0.78      0.75      1000boomerang       0.73      0.70      0.71      1000bottlecap       0.58      0.54      0.56      1000bowtie       0.87      0.86      0.86      1000bracelet       0.68      0.60      0.64      1000brain       0.59      0.60      0.59      1000bread       0.54      0.63      0.58      1000bridge       0.61      0.64      0.63      1000broccoli       0.58      0.70      0.64      1000broom       0.56      0.68      0.61      1000bucket       0.62      0.66      0.64      1000bulldozer       0.69      0.70      0.70      1000bus       0.56      0.42      0.48      1000bush       0.47      0.65      0.55      1000butterfly       0.86      0.88      0.87      1000cactus       0.69      0.87      0.77      1000cake       0.53      0.42      0.47      1000calculator       0.76      0.82      0.79      1000calendar       0.54      0.50      0.52      1000camel       0.82      0.84      0.83      1000camera       0.87      0.74      0.80      1000camouflage       0.23      0.43      0.30      1000campfire       0.72      0.77      0.75      1000candle       0.75      0.73      0.74      1000cannon       0.77      0.69      0.72      1000canoe       0.67      0.63      0.65      1000car       0.65      0.63      0.64      1000carrot       0.75      0.82      0.78      1000castle       0.79      0.72      0.75      1000cat       0.69      0.66      0.68      1000ceiling fan       0.83      0.64      0.72      1000cell phone       0.62      0.60      0.61      1000cello       0.51      0.67      0.58      1000chair       0.83      0.80      0.81      1000chandelier       0.74      0.71      0.73      1000church       0.72      0.67      0.69      1000circle       0.53      0.86      0.66      1000clarinet       0.53      0.63      0.58      1000clock       0.86      0.77      0.82      1000cloud       0.73      0.69      0.71      1000coffee cup       0.67      0.43      0.52      1000compass       0.69      0.78      0.73      1000computer       0.79      0.62      0.69      1000cookie       0.68      0.80      0.74      1000cooler       0.47      0.33      0.38      1000couch       0.76      0.82      0.79      1000cow       0.70      0.57      0.63      1000crab       0.70      0.72      0.71      1000crayon       0.44      0.52      0.47      1000crocodile       0.65      0.57      0.60      1000crown       0.87      0.87      0.87      1000cruise ship       0.76      0.69      0.73      1000cup       0.43      0.50      0.47      1000diamond       0.73      0.88      0.80      1000dishwasher       0.56      0.47      0.51      1000diving board       0.53      0.54      0.53      1000dog       0.50      0.41      0.45      1000dolphin       0.79      0.59      0.68      1000donut       0.75      0.88      0.81      1000door       0.69      0.72      0.70      1000dragon       0.52      0.42      0.47      1000dresser       0.75      0.65      0.70      1000drill       0.78      0.71      0.75      1000drums       0.71      0.68      0.70      1000duck       0.68      0.49      0.57      1000dumbbell       0.78      0.80      0.79      1000ear       0.81      0.75      0.78      1000elbow       0.74      0.62      0.68      1000elephant       0.66      0.66      0.66      1000envelope       0.87      0.94      0.90      1000eraser       0.50      0.61      0.55      1000eye       0.83      0.85      0.84      1000eyeglasses       0.84      0.80      0.82      1000face       0.62      0.64      0.63      1000fan       0.76      0.60      0.67      1000feather       0.58      0.60      0.59      1000fence       0.67      0.71      0.69      1000finger       0.70      0.63      0.67      1000fire hydrant       0.56      0.64      0.60      1000fireplace       0.74      0.67      0.71      1000firetruck       0.71      0.50      0.59      1000fish       0.89      0.85      0.87      1000flamingo       0.69      0.75      0.72      1000flashlight       0.80      0.82      0.81      1000flip flops       0.64      0.75      0.69      1000floor lamp       0.77      0.70      0.74      1000flower       0.79      0.83      0.81      1000flying saucer       0.65      0.64      0.64      1000foot       0.68      0.66      0.67      1000fork       0.81      0.79      0.80      1000frog       0.46      0.47      0.47      1000frying pan       0.78      0.76      0.77      1000garden       0.59      0.63      0.61      1000garden hose       0.42      0.28      0.33      1000giraffe       0.87      0.80      0.84      1000goatee       0.72      0.73      0.72      1000golf club       0.60      0.62      0.61      1000grapes       0.68      0.65      0.66      1000grass       0.59      0.83      0.69      1000guitar       0.68      0.50      0.58      1000hamburger       0.66      0.83      0.73      1000hammer       0.71      0.75      0.73      1000hand       0.83      0.83      0.83      1000harp       0.83      0.78      0.80      1000hat       0.72      0.71      0.72      1000headphones       0.92      0.91      0.92      1000hedgehog       0.73      0.74      0.73      1000helicopter       0.81      0.83      0.82      1000helmet       0.63      0.66      0.64      1000hexagon       0.70      0.73      0.72      1000hockey puck       0.59      0.61      0.60      1000hockey stick       0.59      0.54      0.56      1000horse       0.53      0.85      0.65      1000hospital       0.80      0.68      0.74      1000hot air balloon       0.79      0.72      0.75      1000hot dog       0.60      0.63      0.62      1000hot tub       0.58      0.51      0.54      1000hourglass       0.86      0.87      0.87      1000house       0.77      0.77      0.77      1000house plant       0.85      0.82      0.83      1000hurricane       0.39      0.45      0.42      1000ice cream       0.82      0.85      0.84      1000jacket       0.75      0.72      0.74      1000jail       0.71      0.72      0.71      1000kangaroo       0.73      0.71      0.72      1000key       0.71      0.76      0.74      1000keyboard       0.50      0.48      0.49      1000knee       0.63      0.68      0.65      1000ladder       0.88      0.91      0.89      1000lantern       0.70      0.53      0.60      1000laptop       0.63      0.80      0.71      1000leaf       0.73      0.71      0.72      1000leg       0.58      0.50      0.54      1000light bulb       0.69      0.79      0.73      1000lighthouse       0.71      0.74      0.72      1000lightning       0.76      0.69      0.72      1000line       0.55      0.82      0.66      1000lion       0.70      0.76      0.73      1000lipstick       0.59      0.69      0.63      1000lobster       0.61      0.47      0.53      1000lollipop       0.76      0.85      0.80      1000mailbox       0.75      0.66      0.70      1000map       0.65      0.73      0.68      1000marker       0.39      0.16      0.23      1000matches       0.52      0.47      0.49      1000megaphone       0.80      0.70      0.75      1000mermaid       0.76      0.84      0.80      1000microphone       0.64      0.73      0.68      1000microwave       0.79      0.75      0.77      1000monkey       0.59      0.56      0.57      1000moon       0.69      0.60      0.64      1000mosquito       0.48      0.55      0.51      1000motorbike       0.64      0.62      0.63      1000mountain       0.74      0.80      0.77      1000mouse       0.53      0.46      0.49      1000moustache       0.75      0.72      0.73      1000mouth       0.72      0.76      0.74      1000mug       0.54      0.65      0.59      1000mushroom       0.66      0.76      0.70      1000nail       0.58      0.66      0.62      1000necklace       0.75      0.63      0.68      1000nose       0.69      0.75      0.72      1000ocean       0.54      0.54      0.54      1000octagon       0.71      0.62      0.66      1000octopus       0.89      0.83      0.86      1000onion       0.75      0.68      0.71      1000oven       0.50      0.39      0.44      1000owl       0.68      0.65      0.67      1000paint can       0.51      0.49      0.50      1000paintbrush       0.58      0.63      0.61      1000palm tree       0.73      0.83      0.78      1000panda       0.66      0.62      0.64      1000pants       0.75      0.68      0.71      1000paper clip       0.75      0.78      0.76      1000parachute       0.81      0.79      0.80      1000parrot       0.54      0.59      0.56      1000passport       0.60      0.55      0.58      1000peanut       0.70      0.73      0.71      1000pear       0.72      0.80      0.76      1000peas       0.70      0.56      0.62      1000pencil       0.58      0.60      0.59      1000penguin       0.69      0.78      0.73      1000piano       0.65      0.66      0.65      1000pickup truck       0.60      0.64      0.62      1000picture frame       0.68      0.89      0.77      1000pig       0.77      0.56      0.65      1000pillow       0.60      0.58      0.59      1000pineapple       0.80      0.85      0.82      1000pizza       0.65      0.77      0.70      1000pliers       0.69      0.55      0.61      1000police car       0.67      0.68      0.67      1000pond       0.40      0.47      0.43      1000pool       0.51      0.23      0.32      1000popsicle       0.70      0.79      0.75      1000postcard       0.74      0.58      0.65      1000potato       0.54      0.40      0.46      1000power outlet       0.61      0.72      0.66      1000purse       0.64      0.69      0.66      1000rabbit       0.66      0.80      0.72      1000raccoon       0.43      0.44      0.44      1000radio       0.71      0.59      0.64      1000rain       0.77      0.90      0.83      1000rainbow       0.79      0.92      0.85      1000rake       0.69      0.67      0.68      1000remote control       0.67      0.68      0.67      1000rhinoceros       0.65      0.75      0.69      1000river       0.66      0.61      0.64      1000roller coaster       0.70      0.52      0.60      1000rollerskates       0.86      0.83      0.84      1000sailboat       0.84      0.87      0.86      1000sandwich       0.50      0.68      0.57      1000saw       0.81      0.83      0.82      1000saxophone       0.79      0.77      0.78      1000school bus       0.51      0.44      0.47      1000scissors       0.80      0.84      0.82      1000scorpion       0.70      0.76      0.73      1000screwdriver       0.58      0.62      0.60      1000sea turtle       0.79      0.73      0.76      1000see saw       0.85      0.79      0.82      1000shark       0.72      0.72      0.72      1000sheep       0.75      0.80      0.77      1000shoe       0.73      0.75      0.74      1000shorts       0.67      0.76      0.71      1000shovel       0.62      0.73      0.67      1000sink       0.62      0.76      0.68      1000skateboard       0.83      0.85      0.84      1000skull       0.86      0.83      0.85      1000skyscraper       0.65      0.56      0.60      1000sleeping bag       0.55      0.59      0.57      1000smiley face       0.74      0.80      0.77      1000snail       0.79      0.90      0.84      1000snake       0.65      0.66      0.65      1000snorkel       0.79      0.73      0.76      1000snowflake       0.79      0.84      0.81      1000snowman       0.83      0.90      0.86      1000soccer ball       0.69      0.70      0.69      1000sock       0.77      0.75      0.76      1000speedboat       0.65      0.65      0.65      1000spider       0.72      0.79      0.76      1000spoon       0.69      0.57      0.63      1000spreadsheet       0.67      0.62      0.65      1000square       0.52      0.84      0.65      1000squiggle       0.41      0.40      0.40      1000squirrel       0.71      0.74      0.72      1000stairs       0.90      0.91      0.90      1000star       0.93      0.91      0.92      1000steak       0.53      0.46      0.49      1000stereo       0.61      0.68      0.64      1000stethoscope       0.87      0.75      0.81      1000stitches       0.71      0.79      0.75      1000stop sign       0.86      0.88      0.87      1000stove       0.71      0.66      0.69      1000strawberry       0.80      0.80      0.80      1000streetlight       0.75      0.71      0.73      1000string bean       0.51      0.39      0.44      1000submarine       0.83      0.67      0.74      1000suitcase       0.75      0.57      0.64      1000sun       0.87      0.88      0.87      1000swan       0.69      0.67      0.68      1000sweater       0.68      0.65      0.67      1000swing set       0.89      0.90      0.89      1000sword       0.85      0.81      0.83      1000t-shirt       0.80      0.78      0.79      1000table       0.73      0.76      0.74      1000teapot       0.82      0.77      0.80      1000teddy-bear       0.66      0.74      0.70      1000telephone       0.67      0.54      0.60      1000television       0.88      0.85      0.86      1000tennis racquet       0.86      0.74      0.80      1000tent       0.80      0.77      0.78      1000tiger       0.53      0.47      0.50      1000toaster       0.59      0.70      0.64      1000toe       0.67      0.63      0.65      1000toilet       0.74      0.80      0.77      1000tooth       0.72      0.74      0.73      1000toothbrush       0.74      0.76      0.75      1000toothpaste       0.54      0.56      0.55      1000tornado       0.63      0.69      0.66      1000tractor       0.65      0.71      0.68      1000traffic light       0.84      0.84      0.84      1000train       0.61      0.74      0.67      1000tree       0.72      0.75      0.73      1000triangle       0.87      0.93      0.90      1000trombone       0.58      0.48      0.53      1000truck       0.50      0.41      0.45      1000trumpet       0.65      0.49      0.56      1000umbrella       0.91      0.86      0.88      1000underwear       0.83      0.64      0.72      1000van       0.46      0.58      0.51      1000vase       0.82      0.67      0.74      1000violin       0.52      0.52      0.52      1000washing machine       0.74      0.78      0.76      1000watermelon       0.56      0.66      0.61      1000waterslide       0.57      0.70      0.63      1000whale       0.71      0.74      0.72      1000wheel       0.82      0.50      0.62      1000windmill       0.82      0.77      0.79      1000wine bottle       0.77      0.81      0.79      1000wine glass       0.86      0.85      0.86      1000wristwatch       0.72      0.74      0.73      1000yoga       0.60      0.57      0.58      1000zebra       0.73      0.66      0.69      1000zigzag       0.73      0.75      0.74      1000accuracy                           0.68    340000macro avg       0.69      0.68      0.68    340000weighted avg       0.69      0.68      0.68    340000
http://www.hengruixuexiao.com/news/18837.html

相关文章:

  • wordpress首页描述优化关键词的公司
  • 最好的网站建设公司有哪些seo首页网站
  • 广州网站建设360元互联网营销软件
  • 网上做兼职网站最近的新闻大事
  • 中国最大网站建设公司搜索引擎优化的主要工作
  • 成都专业网站建设建站平台
  • 那个做我女朋友的网站百度投放广告流程
  • 国外最新创意产品网站软文发布
  • 餐饮类网站建设达到的作用快速排名怎么做
  • 南通企业网站建设网站怎么接广告
  • 做营销网站企业运营推广的方式和渠道有哪些
  • 网站的后期维护seo岗位是什么意思
  • 贵阳金阳网站建设公司企排排官网
  • 北京网络公司哪家最好广州网站运营专业乐云seo
  • 在线网站源码提取中国网站排名网官网
  • 下载做网站ftp具体步骤百度指数的网址是什么
  • 网站制作公司业务发展方案it行业培训机构一般多少钱
  • 专业模板网站制作服务山东自助seo建站
  • 做网站西安哪家好html网页设计模板
  • 做asp网站需要的实验报告单军事新闻最新消息今天
  • 企业专业网站建设2024年重启核酸
  • 咋样做班级主页网站怎么自己开发网站
  • 郴州公司做网站网络公司优化关键词
  • 网站备案需要审核多久搜索引擎优化技术有哪些
  • 设计师网名高级seo关键词快速排名介绍
  • 个人做房产网站平台运营
  • 网络整合营销4i原则上海seo推广
  • 徐州企业建站系统怎么发布信息到百度
  • 怎么用wordpress仿站seo技术培训机构
  • 手机免费做网站企业文化ppt