当前位置: 首页 > news >正文

霸州有做滤芯网站的吗seo优化网站推广专员招聘

霸州有做滤芯网站的吗,seo优化网站推广专员招聘,wordpress 方括号,广东佛山网站建设有向无环图(DAG)是一类非常重要的图结构,广泛应用于任务调度、数据依赖分析等领域。本文将介绍如何在DAG中实现拓扑排序、单源最短路径和单源最长路径算法,并提供完整的Java代码示例。 图结构定义 首先,我们定义一个…

有向无环图(DAG)是一类非常重要的图结构,广泛应用于任务调度、数据依赖分析等领域。本文将介绍如何在DAG中实现拓扑排序、单源最短路径和单源最长路径算法,并提供完整的Java代码示例。

图结构定义

首先,我们定义一个简单的图结构,包括节点和边。使用Java代码如下:

import java.util.*;class Graph {final List<List<Edge>> adjList;public Graph(int vertices) {adjList = new ArrayList<>(vertices);for (int i = 0; i < vertices; i++) {adjList.add(new ArrayList<>());}}public void addEdge(int from, int to, int weight) {adjList.get(from).add(new Edge(from, to, weight));}public List<Edge> getEdges(int vertex) {return adjList.get(vertex);}public int size() {return adjList.size();}static class Edge {final int from;final int to;final int weight;Edge(int from, int to, int weight) {this.from = from;this.to = to;this.weight = weight;}@Overridepublic String toString() {return String.format("%d - %d: %d", from, to, weight);}}
}

拓扑排序算法

拓扑排序是DAG中非常基础且重要的算法。它为每个节点排列顺序,使得所有有向边从前往后指向。这里我们介绍两种拓扑排序算法:基于DFS和基于BFS的算法。

基于DFS的拓扑排序
import java.util.*;class TopologicalSort {public static List<Integer> sortDFS(Graph graph) {boolean[] visited = new boolean[graph.size()];Stack<Integer> stack = new Stack<>();for (int i = 0; i < graph.size(); i++) {if (!visited[i]) {topologicalSortUtil(graph, i, visited, stack);}}List<Integer> topoOrder = new ArrayList<>();while (!stack.isEmpty()) {topoOrder.add(stack.pop());}return topoOrder;}private static void topologicalSortUtil(Graph graph, int v, boolean[] visited, Stack<Integer> stack) {visited[v] = true;for (Graph.Edge edge : graph.getEdges(v)) {if (!visited[edge.to]) {topologicalSortUtil(graph, edge.to, visited, stack);}}stack.push(v);}
}
基于BFS的拓扑排序
import java.util.*;class TopologicalSort {public static List<Integer> sortBFS(Graph graph) {int[] inDegree = new int[graph.size()];for (List<Graph.Edge> edges : graph.adjList) {for (Graph.Edge edge : edges) {inDegree[edge.to]++;}}Queue<Integer> queue = new LinkedList<>();for (int i = 0; i < graph.size(); i++) {if (inDegree[i] == 0) {queue.offer(i);}}List<Integer> topoOrder = new ArrayList<>();while (!queue.isEmpty()) {int v = queue.poll();topoOrder.add(v);for (Graph.Edge edge : graph.getEdges(v)) {if (--inDegree[edge.to] == 0) {queue.offer(edge.to);}}}return topoOrder.size() == graph.size() ? topoOrder : new ArrayList<>(); // Check for cycle}
}

比较两种拓扑排序算法

  1. DFS拓扑排序

    • 优点:实现简单,递归方式直观,适用于大部分编程场景。
    • 缺点:需要使用额外的栈空间,可能导致栈溢出问题。
  2. BFS拓扑排序(Kahn’s Algorithm)

    • 优点:使用队列实现,避免了递归带来的栈空间问题。能有效检测图中的环。
    • 缺点:实现稍微复杂,需要额外的入度数组。

基于拓扑排序的DAG单源最短路径算法

DAG中的单源最短路径算法可以利用拓扑排序来实现。由于DAG中不存在环,可以按照拓扑顺序依次松弛每个节点的边,从而实现单源最短路径。

import java.util.*;class ShortestPathDAG {public static int[] shortestPath(Graph graph, int start) {List<Integer> topoOrder = TopologicalSort.sortDFS(graph);int[] distTo = new int[graph.size()];Arrays.fill(distTo, Integer.MAX_VALUE);distTo[start] = 0;for (int v : topoOrder) {if (distTo[v] != Integer.MAX_VALUE) {for (Graph.Edge edge : graph.getEdges(v)) {if (distTo[v] + edge.weight < distTo[edge.to]) {distTo[edge.to] = distTo[v] + edge.weight;}}}}return distTo;}
}
最短路径算法与Dijkstra算法的优劣性比较
  • 优点

    • 拓扑排序+最短路径算法在DAG中效率高,可以在线性时间内解决最短路径问题。
    • 对于DAG来说,算法实现相对简单。
  • 缺点

    • 仅适用于DAG,对于有环图无效。
    • Dijkstra算法适用于任意有向图和无向图,且能处理正权边的最短路径问题。

基于拓扑排序的DAG单源最长路径算法

方法1:使用图的副本和最短路径算法
import java.util.*;class LongestPathDAG {public static int[] longestPathWithNegation(Graph graph, int start) {Graph negatedGraph = new Graph(graph.size());for (int i = 0; i < graph.size(); i++) {for (Graph.Edge edge : graph.getEdges(i)) {negatedGraph.addEdge(edge.from, edge.to, -edge.weight);}}int[] negatedDistances = ShortestPathDAG.shortestPath(negatedGraph, start);int[] distances = new int[graph.size()];for (int i = 0; i < negatedDistances.length; i++) {distances[i] = -negatedDistances[i];}return distances;}
}
方法2:直接修改最短路径算法
import java.util.*;class LongestPathDAG {public static int[] longestPathDirect(Graph graph, int start) {List<Integer> topoOrder = TopologicalSort.sortDFS(graph);int[] distTo = new int[graph.size()];Arrays.fill(distTo, Integer.MIN_VALUE);distTo[start] = 0;for (int v : topoOrder) {if (distTo[v] != Integer.MIN_VALUE) {for (Graph.Edge edge : graph.getEdges(v)) {if (distTo[v] + edge.weight > distTo[edge.to]) {distTo[edge.to] = distTo[v] + edge.weight;}}}}return distTo;}
}

比较两种单源最长路径算法

  • 使用图的副本和最短路径算法

    • 优点:利用现有的最短路径算法作为黑箱,方便直接调用。
    • 缺点:需要额外创建图的副本,增加了时间和空间复杂度。
  • 直接修改最短路径算法

    • 优点:无需额外的图副本,算法效率更高,直接适用于最长路径问题。
    • 缺点:实现稍微复杂,需要对算法进行适当调整。

主类(用于测试)

public class Main {public static void main(String[] args) {Graph graph = new Graph(6);graph.addEdge(0, 1, 5);graph.addEdge(0, 2, 3);graph.addEdge(1, 3, 6);graph.addEdge(1, 2, 2);graph.addEdge(2, 4, 4);graph.addEdge(2, 5, 2);graph.addEdge(2, 3, 7);graph.addEdge(3, 4, -1);graph.addEdge(3, 5, 1);graph.addEdge(4, 5, -2);List<Integer> topoOrderDFS = TopologicalSort.sortDFS(graph);System.out.println("Topological Sort (DFS): " + topoOrderDFS);List<Integer> topoOrderBFS = TopologicalSort.sortBFS(graph);System.out.println("Topological Sort (BFS): " + topoOrderBFS);int[] shortestPaths = ShortestPathDAG.shortestPath(graph, 0);System.out.println("Shortest Paths from vertex 0: " + Arrays.toString(shortestPaths));int[] longestPathsNegation = LongestPathDAG.longestPathWithNegation(graph, 0);System.out.println("Longest Paths from vertex 0 (with negation): " + Arrays.toString(longestPathsNegation));int[] longestPathsDirect = LongestPathDAG.longestPathDirect(graph, 0);System.out.println("Longest Paths from vertex 0 (direct method): " + Arrays.toString(longestPathsDirect));}
}

总结

本文介绍了在有向无环图(DAG)中实现拓扑排序、单源最短路径和单源最长路径算法的详细步骤和Java代码。通过比较不同的拓扑排序方法和最长路径算法,我们可以根据实际需求选择最适合的实现方案。希望这些内容能帮助读者更好地理解和应用DAG相关的算法。

http://www.hengruixuexiao.com/news/18114.html

相关文章:

  • 扬中会建网站互联网营销师怎么报名
  • 西安好玩的地方排行榜正规网站优化哪个公司好
  • 网站搭建品牌品牌策划是做什么的
  • 公司网站快速备案百度金融
  • 做网站找哪家好怎么自己找外贸订单
  • 做app还是网站免费网站流量统计工具
  • 国内高端医疗网站建设seo推广方案
  • 建网站 必须学html吗枣庄网站seo
  • 建设公司网站法律声明国内快速建站
  • 湖州网站seo优化seo网页推广
  • 天津自动seo安卓优化大师官网下载
  • 浙江建设职业技术学院门户网站seo外链专员
  • 北京个人制作网站有哪些内容百度搜索排名怎么收费
  • 上海网站改版哪家好天津百度网站快速排名
  • 一互联网网站design哪家建设公司网站
  • 温岭网站制作百度统计app
  • 沈阳专业网站制作团队怎样在网上推广
  • 做一个网购网站需要怎么做seo深度优化公司
  • dede怎么做网站app推广代理
  • 怎么做自己公司的app南宁网站seo外包
  • wordpress 内容编辑器郑州seo使用教程
  • 微信开发小程序公司淘宝seo搜索排名优化
  • 做博彩类的网站网络营销策划总结
  • 网站建设代码下载大全百度网盘手机版
  • 网站开发外包合同模板权威发布
  • 怎么做网站排名会更好重庆电子商务网站seo
  • 一家专门做海报的网站seo网站推广免费
  • 网站群建设规范南京seo招聘
  • wordpress4.1搜索引擎营销优化的方法
  • 深圳建设工程质量安全智能监管平台网站网站百度收录秒收方法