上海羽贝网站建设网络优化大师手机版
验证ncnn模型的精度
1、进行pth模型的验证
得到ncnn模型的顺序为:.pth–>.onnx–>ncnn
.pth的精度验证如下:
如进行的是二分类:
model = init_model(model, data_cfg, device=device, mode='eval')###.pth转.onnx模型# #---# input_names = ["x"]# output_names = ["y"]# inp = torch.randn(1, 3, 256, 128) ##错误示例inp = np.full((1, 3, 160, 320), 0.5).astype(np.float) #(160,320) = (h,w)inp = torch.FloatTensor(inp)out = model(inp)print(out)
没有经过softmax层,out输出为±1的两个值。
2、转为onnx后的精度验证
sess = onnxruntime.InferenceSession("G:\\pycharm_pytorch171\\pytorch_classification\\main\\sim.onnx", providers=["CUDAExecutionProvider"]) # use gpuinput_name = sess.get_inputs()[0].nameprint("input_name: ", input_name)output_name = sess.get_outputs()[0].nameprint("output_name: ", output_name)# test_images = torch.rand([1, 3, 256, 128])test_images = np.full((1, 3, 160, 320), 0.5).astype(np.float) #(160,320) = (h,w)test_images = torch.FloatTensor(test_images)print("test_image", test_images)prediction = sess.run([output_name], {input_name: test_images.numpy()})print(prediction)
3、ncnn精度验证
-
首先保证mean、norm输出的值与onnx保持一致,因为onnx直接输入值0.5,ncnn模型经过mean、norm计算后的结果与0.5一致就行。
-
然后就是ncnn模型的计算输出
- 查看输出结果是否是0.5,首先得将输入值1给到img```cppconstexpr int w = 320;constexpr int h = 160;float cbuf[h][w];cv::Mat img(h, w, CV_8UC3,(float *)cbuf);//BYTE* iPtr = new BYTE[128 * 256 * 3];BYTE* iPtr = new BYTE[h * w * 3];for (int i = 0; i < h; i++){for (int j = 0; j < w; j++){for (int k = 0; k < 3; k++){//iPtr[i * 256 * 3 + j * 3 + k] = img.at<cv::Vec3f>(i, j)[k];img.at<cv::Vec3b>(i, j)[k] = 1;}}}```- 经过上面的赋值,通过了mean、norm计算后,得到的结果进行查看,值为0.5则正确转换。得到的结果送入下面的代码进行输出。ncnn结果为mat,因此采用该方法进行遍历查看。```cpp//输出ncnn matvoid ncnn_mat_print(const ncnn::Mat& m){for (int q = 0; q < m.c; q++){const float* ptr = m.channel(q);for (int y = 0; y < m.h; y++){for (int x = 0; x < m.w; x++){printf("%f ", ptr[x]);}ptr += m.w;printf("\n");}printf("------------------------\n");}}```将mat给到模型进行推理得到结果。
4、结果确认
一般情况下,pth模型与onnx模型结果相差不大,ncnn会有点点损失,千分位上的损失,这样精度基本上是一致的。
若不一致,看哪一步结果相差太大,如果是ncnn这一步相差太大,检查是否是值输入有问题,或者是输入的(h,w)弄反了。