当前位置: 首页 > news >正文

电脑网站怎样给网页做适配seo网站外包公司

电脑网站怎样给网页做适配,seo网站外包公司,哈尔滨短视频制作公司,国外网站推广软件目录 十五、图像分割 简单阈值分割 (threshold) 自适应阈值分割 (adaptiveThreshold) 颜色范围分割 (inRange) 分水岭算法 (watershed) 泛洪填充 (floodFill) GrabCut算法 (grabCut) 距离变换 (distanceTransform) 最大稳定极值区域检测 (MSER) 均值漂移滤波 (pyrMean…

目录

十五、图像分割

简单阈值分割 (threshold)

自适应阈值分割 (adaptiveThreshold)

颜色范围分割 (inRange)

分水岭算法 (watershed)

泛洪填充 (floodFill)

GrabCut算法 (grabCut)

距离变换 (distanceTransform)

最大稳定极值区域检测 (MSER)

均值漂移滤波 (pyrMeanShiftFiltering)

十六、连通域

计算连通组件 (connectedComponents)

计算连通组件并返回统计信息 (connectedComponentsWithStats)

解释

http://t.csdnimg.cn/i8pqt —— opencv—常用函数学习_“干货“_总(VIP)

散的正在一部分一部分发,不需要VIP。

资料整理不易,有用话给个赞和收藏吧。


十五、图像分割

        在OpenCV中,图像分割是将图像分割成不同区域或对象的过程,常用于对象检测、识别和图像分析。下面介绍一些常用的图像分割函数及其使用示例。

图像分割函数
thresholdadaptiveThresholdinRangewatershedfloodFill
简单阈值分割自适应阈值分割颜色范围分割分水岭算法泛洪填充
grabCutdistanceTransformMSERpyrMeanShiftFiltering
GrabCut算法距离变换最大稳定极值区域检测均值漂移滤波
简单阈值分割 (threshold)
import cv2
import numpy as np# 读取图像
image = cv2.imread('path_to_image.jpg', cv2.IMREAD_GRAYSCALE)# 应用简单阈值分割
_, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
cv2.imshow('Binary Image', binary_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
自适应阈值分割 (adaptiveThreshold)
# 应用自适应阈值分割
adaptive_thresh = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 11, 2)
cv2.imshow('Adaptive Threshold Image', adaptive_thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()
颜色范围分割 (inRange)
# 读取彩色图像
color_image = cv2.imread('path_to_image.jpg')# 定义颜色范围
lower_bound = np.array([0, 120, 70])
upper_bound = np.array([10, 255, 255])# 转换到HSV颜色空间
hsv_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2HSV)# 应用颜色范围分割
mask = cv2.inRange(hsv_image, lower_bound, upper_bound)
cv2.imshow('Mask', mask)
cv2.waitKey(0)
cv2.destroyAllWindows()
分水岭算法 (watershed)
# 读取图像并转换为灰度图
gray = cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)# 确定背景区域
kernel = np.ones((3, 3), np.uint8)
sure_bg = cv2.dilate(binary, kernel, iterations=3)# 确定前景区域
dist_transform = cv2.distanceTransform(binary, cv2.DIST_L2, 5)
_, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)# 确定未知区域
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg, sure_fg)# 标记连通组件
_, markers = cv2.connectedComponents(sure_fg)# 为确保背景为1,增加1
markers = markers + 1# 将未知区域标记为0
markers[unknown == 255] = 0# 应用分水岭算法
markers = cv2.watershed(color_image, markers)
color_image[markers == -1] = [0, 0, 255]cv2.imshow('Watershed', color_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
泛洪填充 (floodFill)
# 应用泛洪填充
flood_filled = color_image.copy()
h, w = flood_filled.shape[:2]
mask = np.zeros((h + 2, w + 2), np.uint8)
cv2.floodFill(flood_filled, mask, (0, 0), (255, 0, 0))cv2.imshow('Flood Fill', flood_filled)
cv2.waitKey(0)
cv2.destroyAllWindows()
GrabCut算法 (grabCut)
# 初始化掩码
mask = np.zeros(color_image.shape[:2], np.uint8)# 定义矩形
rect = (50, 50, 450, 290)# 定义模型
bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)# 应用GrabCut算法
cv2.grabCut(color_image, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)
mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8')
grabcut_image = color_image * mask2[:, :, np.newaxis]cv2.imshow('GrabCut', grabcut_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
距离变换 (distanceTransform)
# 应用距离变换
dist_transform = cv2.distanceTransform(binary, cv2.DIST_L2, 5)
cv2.imshow('Distance Transform', dist_transform)
cv2.waitKey(0)
cv2.destroyAllWindows()
最大稳定极值区域检测 (MSER)
# 创建MSER对象
mser = cv2.MSER_create()# 检测MSER区域
regions, _ = mser.detectRegions(gray)# 绘制检测到的区域
output = color_image.copy()
for p in regions:hull = cv2.convexHull(p.reshape(-1, 1, 2))cv2.polylines(output, [hull], 1, (0, 255, 0))cv2.imshow('MSER', output)
cv2.waitKey(0)
cv2.destroyAllWindows()
均值漂移滤波 (pyrMeanShiftFiltering)
# 应用均值漂移滤波
mean_shift_image = cv2.pyrMeanShiftFiltering(color_image, 21, 51)
cv2.imshow('Mean Shift Filtering', mean_shift_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

        这些示例展示了如何使用OpenCV中的各种图像分割函数来处理图像。根据具体的应用需求,可以灵活运用这些函数来实现复杂的图像分割任务。

十六、连通域

        在OpenCV中,连通域分析是图像处理中的一个重要步骤,用于检测和标记图像中的连通区域。主要有两个函数:connectedComponentsconnectedComponentsWithStats。下面介绍这些函数及其使用示例。

连通域分析函数
connectedComponentsconnectedComponentsWithStats
计算连通组件计算连通组件并返回统计信息
计算连通组件 (connectedComponents)
import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('path_to_image.jpg', cv2.IMREAD_GRAYSCALE)# 应用阈值处理
_, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)# 计算连通组件
num_labels, labels = cv2.connectedComponents(binary_image)# 显示结果
label_hue = np.uint8(179 * labels / np.max(labels))
blank_ch = 255 * np.ones_like(label_hue)
labeled_img = cv2.merge([label_hue, blank_ch, blank_ch])# 转换到BGR颜色空间
labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_HSV2BGR)# 设置背景为黑色
labeled_img[label_hue == 0] = 0cv2.imshow('Connected Components', labeled_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
计算连通组件并返回统计信息 (connectedComponentsWithStats)
# 计算连通组件及统计信息
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_image)# 输出每个连通组件的统计信息
for i in range(num_labels):print(f"Component {i}:")print(f"  Bounding box: {stats[i, cv2.CC_STAT_LEFT]}, {stats[i, cv2.CC_STAT_TOP]}, "f"{stats[i, cv2.CC_STAT_WIDTH]}, {stats[i, cv2.CC_STAT_HEIGHT]}")print(f"  Area: {stats[i, cv2.CC_STAT_AREA]}")print(f"  Centroid: {centroids[i]}")# 显示结果
label_hue = np.uint8(179 * labels / np.max(labels))
blank_ch = 255 * np.ones_like(label_hue)
labeled_img = cv2.merge([label_hue, blank_ch, blank_ch])# 转换到BGR颜色空间
labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_HSV2BGR)# 设置背景为黑色
labeled_img[label_hue == 0] = 0cv2.imshow('Connected Components with Stats', labeled_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
解释
  • connectedComponents:此函数返回连通组件的数量和每个像素所属的标签。
  • connectedComponentsWithStats:此函数除了返回标签外,还返回每个连通组件的统计信息(如边界框、面积)和重心。

        这些示例展示了如何使用OpenCV中的连通域分析函数来处理图像。根据具体的应用需求,可以灵活运用这些函数来实现复杂的连通域检测和分析任务。

http://www.hengruixuexiao.com/news/16279.html

相关文章:

  • 德州网站制作公司网站搭建
  • 做网站和做微信小程序seo网站关键词排名提升
  • 阿里云服务器创建多个网站百度资源平台链接提交
  • 怎么免费建立自己的网站如何被百度收录
  • 自己做的网站怎么备案西安百度关键词优化排名
  • 做网站维护价格网站建设明细报价表
  • 手机网站的模板下载软件全网整合营销公司
  • 献县建设局网站百度推广管理平台登录
  • 电子商务网站建设有哪些流程图百度下载2022新版安装
  • 给个网站好人有好报深圳品牌seo
  • 网站对比app还有优势吗网站优化的意义
  • t型布局网站怎么做品牌营销推广策划公司
  • 做网站开票是多少个点的票搜索百度app下载
  • 南京小程序网站开发关键词怎么优化
  • 新网站快速提高排名如何创建一个平台
  • 做小说网站做国外域名还是国内的好处如何做好网上销售
  • 网站空间文件夹广州头条今日头条新闻
  • 优秀设计师个人网站2023北京封控了
  • 网站做下cdn杭州网站优化咨询
  • 网站建设分金手指专业网店营销
  • 做阿里巴巴网站需要哪些资料上海发布微信公众号
  • 企业产品网站源码武汉网站营销seo方案
  • 网站建设与网页制作技术电商怎么做营销推广
  • 购物网站功能介绍湖北百度推广公司
  • 怎么邀约客户做网站软文发布公司
  • 青海网站建设杭州网站建设技术支持
  • 广州手机模板建站网络营销软件大全
  • 做设计外包的网站国内真正的永久免费砖石
  • 如何自制公司网站一网信息一个简单便捷的新闻网站
  • 查询建筑资质的网站策划方案