当前位置: 首页 > news >正文

怎么做公司网站文案成品短视频网站源码搭建

怎么做公司网站文案,成品短视频网站源码搭建,石家庄手机模板建站,建行信用卡网站1、Pandas 连接 Pandas 连接的操作实例 Pandas具有与SQL等关系数据库非常相似的功能齐全的高性能内存中连接操作。 Pandas提供单个功能merge作为DataFrame对象之间所有标准数据库联接操作的入口点 pd.merge(left, right, howinner, onNone, left_onNone, right_onNone,left_i…

1、Pandas 连接

Pandas 连接的操作实例
Pandas具有与SQL等关系数据库非常相似的功能齐全的高性能内存中连接操作。
Pandas提供单个功能merge作为DataFrame对象之间所有标准数据库联接操作的入口点

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,left_index=False, right_index=False, sort=True)

在这里,我们使用了以下参数:
left − 一个DataFrame对象。
right − 另一个DataFrame对象。
on − 列(名)加入上。必须在左右DataFrame对象中都找到。
left_on − 左侧DataFrame中的列用作键。可以是列名,也可以是长度等于DataFrame长度的数组。
right_on − 右侧DataFrame中的列用作键。可以是列名,也可以是长度等于DataFrame长度的数组。
left_index − 如果为True,则使用左侧DataFrame的索引(行标签)作为其连接键。如果DataFrame具有MultiIndex(分层),则级别数必须与右侧DataFrame中的连接键数匹配。
right_index − 相同的使用作为left_index为正确的数据帧。
how − “左”,“右”,“外”,“内”之一。默认为内部。每种方法已在下面描述。
sort − 排序的结果数据框中加入字典顺序按键。默认情况下为True,在许多情况下,设置为False将大大提高性能。
现在让我们创建两个不同的DataFrame并对其执行合并操作。

import pandas as pd
left = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print(left)
print(right)

运行结果

   id    Name subject_id
0   1    Alex       sub1
1   2     Amy       sub2
2   3   Allen       sub4
3   4   Alice       sub6
4   5  Ayoung       sub5id   Name subject_id
0   1  Billy       sub2
1   2  Brian       sub4
2   3   Bran       sub3
3   4  Bryce       sub6
4   5  Betty       sub5

1.1、在一个键上合并两个数据框

import pandas as pd
left = pd.DataFrame({'id': [1, 2, 3, 4, 5],'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],'subject_id': ['sub1', 'sub2', 'sub4', 'sub6', 'sub5']})
right = pd.DataFrame({'id': [1, 2, 3, 4, 5],'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],'subject_id': ['sub2', 'sub4', 'sub3', 'sub6', 'sub5']})
print(pd.merge(left, right, on='id'))

运行结果

   id  Name_x subject_id_x Name_y subject_id_y
0   1    Alex         sub1  Billy         sub2
1   2     Amy         sub2  Brian         sub4
2   3   Allen         sub4   Bran         sub3
3   4   Alice         sub6  Bryce         sub6
4   5  Ayoung         sub5  Betty         sub5

1.2、在多个键上合并两个数据框

import pandas as pd
left = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print(pd.merge(left,right,on=['id','subject_id']))

运行结果

   id  Name_x subject_id Name_y
0   4   Alice       sub6  Bryce
1   5  Ayoung       sub5  Betty

1.3、合并使用“how”参数

合并的how参数指定如何确定要在结果表中包括哪些键。如果左侧或右侧表中均未出现组合键,则联接表中的值为NA。
这里的一个总结如何选择和他们的SQL等价的名字:
在这里插入图片描述

1.4、左连接

import pandas as pd
left = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print(pd.merge(left, right, on='subject_id', how='left'))

运行结果

 id_x  Name_x subject_id  id_y Name_y
0     1    Alex       sub1   NaN    NaN
1     2     Amy       sub2   1.0  Billy
2     3   Allen       sub4   2.0  Brian
3     4   Alice       sub6   4.0  Bryce
4     5  Ayoung       sub5   5.0  Betty

1.5、右连接

import pandas as pd
left = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print(pd.merge(left, right, on='subject_id', how='right'))

运行结果

  id_x  Name_x subject_id  id_y Name_y
0   2.0     Amy       sub2     1  Billy
1   3.0   Allen       sub4     2  Brian
2   NaN     NaN       sub3     3   Bran
3   4.0   Alice       sub6     4  Bryce
4   5.0  Ayoung       sub5     5  Betty

1.6、外连接

import pandas as pdleft = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],'subject_id':['sub1','sub2','sub4','sub6','sub5']})right = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],'subject_id':['sub2','sub4','sub3','sub6','sub5']})print(pd.merge(left, right, how='outer', on='subject_id'))

运行结果

 id_x  Name_x subject_id  id_y Name_y
0   1.0    Alex       sub1   NaN    NaN
1   2.0     Amy       sub2   1.0  Billy
2   NaN     NaN       sub3   3.0   Bran
3   3.0   Allen       sub4   2.0  Brian
4   5.0  Ayoung       sub5   5.0  Betty
5   4.0   Alice       sub6   4.0  Bryce

1.7、内连接

连接将在索引上执行。联接操作接受调用它的对象。因此,a.join(b)不等于b.join(a)。

import pandas as pdleft = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],'subject_id':['sub1','sub2','sub4','sub6','sub5']})right = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],'subject_id':['sub2','sub4','sub3','sub6','sub5']})print(pd.merge(left, right, on='subject_id', how='inner'))

运行结果

  id_x  Name_x subject_id  id_y Name_y
0     2     Amy       sub2     1  Billy
1     3   Allen       sub4     2  Brian
2     4   Alice       sub6     4  Bryce
3     5  Ayoung       sub5     5  Betty
http://www.hengruixuexiao.com/news/15261.html

相关文章:

  • b2c网站程序企业网站优化服务
  • 外贸网站建设如何做呢专业seo网站
  • 专做女裤有哪些网站seo网络推广公司排名
  • 苏州市网站制作广东seo推广公司
  • 阿里云可以做网站么网络推广自学
  • 宁皓 wordpress北京推广优化经理
  • 如何建设网站使用游戏代理
  • 出国越南做网站8000保底seo全站优化全案例
  • 伊犁网站建设搜索引擎优化课程
  • 如何做网站清风制作自动外链工具
  • 用r做简易的网站b2b外链代发
  • 销售网站制作网站排名提升软件
  • 莱阳网站建设网络营销有什么特点
  • 芜湖市住房和城乡建设厅网站首页怎么免费制作网站
  • 北京王府井半岛酒店重庆seo网站推广优化
  • 企业网站建设 制作seo一个月工资一般多少
  • 价格划算的做pc端网站如何做线上推广
  • 中山建网站费用多少网络营销案例
  • 哪个网站做自考题目免费线上渠道推广有哪些方式
  • 领域网站建设如何让自己的网站快速被百度收录
  • 北京企业网站建设方廊坊百度推广电话
  • 旅游公司网站设计网络营销顾问是做什么的
  • 手机网站用什么软件做的好百度搜索风云榜排行榜
  • 十堰优化网站哪家好百度app下载安装普通下载
  • 哈尔滨建设投资集团天津百度网站快速优化
  • 株洲网站建设技术公司百度搜索浏览器
  • 惠州建站公司今日竞彩足球最新比赛结果查询
  • 网站建设有哪些步骤腾讯企点app
  • 织梦系统做导航网站广州seo公司如何
  • 网站建设6000元seo专业学校