当前位置: 首页 > news >正文

徐汇区网站建设企业推广的渠道有哪些

徐汇区网站建设,企业推广的渠道有哪些,深圳市中心在哪个位置,查网站备案名称1.背景 NSET/MSET是一种非线性的多元预测诊断技术,广泛应用于系统状态估计、故障诊断和预测等领域;相比于传统的线性模型和方法,NSET/MSET能够更好地处理非线性系统,并提供更准确的预测和诊断能力。在早期,MSET融合了…

1.背景

  1. NSET/MSET是一种非线性的多元预测诊断技术,广泛应用于系统状态估计、故障诊断和预测等领域;相比于传统的线性模型和方法,NSET/MSET能够更好地处理非线性系统,并提供更准确的预测和诊断能力。
  2. 在早期,MSET融合了模式识别技术和序贯概率比检验方法,主要应用于核电厂信号验证、仪表精度监控以及组件运行失常等监控场景的研究工作。

2.应用

  1. 工业监控:MSET可用于监测和预测工业设备的状态和性能。通过分析传感器数据和监测参数,MSET可以实时监测设备的运行状态,及时检测异常情况,预测设备故障,并提供预警和维修建议。
  2. 电力系统:MSET可以用于电力系统的状态估计和故障检测。它可以通过分析电力系统中的电流、电压、频率等参数,实时监测电力系统的运行状态,检测潜在的故障或异常情况,并提供故障诊断和恢复策略。

3.概念原理

3.1流程简介

非线性状态估计(NSET)方法是将当前运行数据和已生成的历史运行状态进行对比,计算并比较多状态变量之间的相似度,从而进行故障预警的方法。

3.2流程图

在这里插入图片描述

3.3逐步解析

1)观测矩阵

观测矩阵形象的表示就是一组多变量多步时间数据,其中有m个时间状态,每个时间状态有n个变量数据。
( x 11 x 12 . . . x 1 m x 21 x 22 . . . x 2 m . . . . . . . . . . . . x n 1 x n 2 . . . x n m ) \begin{equation} %开始数学环境 \left( %左括号 \begin{array}{ccc} %该矩阵一共3列,每一列都居中放置 x11 & x12 & ... & x1m\\ %第一行元素 x21 & x22 & ... & x2m\\ %第二行元素 ... & ... & ... & ...\\ xn1 & xn2 & ... & xnm\\ %第二行元素 \end{array} \right) %右括号 \end{equation} x11x21...xn1x12x22...xn2............x1mx2m...xnm

2)训练数据

训练数据K包含系统全范围的动态参数,涵盖的面一定要全,包含了开始运行、运行平稳、运行结束等阶段数据,而且一定不能包含故障数据。
K = [ X ( t 1 + i ) , X ( t 2 + i ) , X ( t k + i ) ] K=[X(t_{1+i}),X(t_{2+i}),X(t_{k+i})] K=[X(t1+i),X(t2+i),X(tk+i)]

3)记忆矩阵

从训练数据中抽取一部分代表性数据,可以组成过程记忆矩阵D,过程记忆矩阵大小为nXd,其中d表示为包含状态的数量,n表示为了观测参数的维度。
( x 1 ( t 1 ) . . . x 1 ( t d ) . . . . . . . . . x n ( t 1 ) . . . x n ( t d ) ) \begin{equation} %开始数学环境 \left( %左括号 \begin{array}{ccc} %该矩阵一共3列,每一列都居中放置 x_1(t_1) & ... & x_1(t_d)\\ %第一行元素 ... & ... & ...\\ %第二行元素 x_n(t_1) & ... & x_n(t_d)\\ %第二行元素 \end{array} \right) %右括号 \end{equation} x1(t1)...xn(t1).........x1(td)...xn(td)

4)剩余训练数据

训练数据中除去记忆矩阵的剩余部分,将会组成剩余训练数据L

5)当前系统估计矩阵

Xobs是当前系统观测矩阵,如果想要求当前系统的估计矩阵,那么就需要使用观测矩阵乘以某个大小相同的权重矩阵,即:
X e s t = D ⋅ W X_{est}=D·W Xest=DW
权值矩阵W为表征状态估计和过程记忆矩阵间相似性测度的大小,为了让Xobs和Xest的残差值最小化,进行求解

6)求解过程

目标函数: m i n ϵ 2 = m i n [ ( X o b s − D ⋅ W ) T ⋅ ( X o b s − D ⋅ W ) ] 目标函数:min\epsilon^2=min[(X_{obs}-D·W)^T·(X_{obs}-D·W)] 目标函数:minϵ2=min[(XobsDW)T(XobsDW)]
最小二乘解: W = ( D T ⋅ D ) − 1 ⋅ ( D T ⋅ D o b s ) 最小二乘解:W=(D^T·D)^{-1}·(D^T·D_{obs}) 最小二乘解:W=DTD1DTDobs
大多数系统的状态数据间都会存在一定的相关性,数据之间的相关性会导致矩阵不可逆,限制了权值的求取。NSET方法利用基于相似性原理的相似性运算符代替点积,通过计算数据状态间的相似程度来表征其权值,解决数据相关所造成的矩阵不可逆。
相似性运算符号: ⊗ 相似性运算符号:\otimes 相似性运算符号:
W = ( D T ⊗ D ) − 1 ⋅ ( D T ⊗ D o b s ) W=(D^T\otimes D)^{-1}·(D^T\otimes D_{obs}) W=(DTD)1(DTDobs)
最终,系统当前的状态估计矩阵与观测矩阵关系如下结果:
X e s t = D ⋅ ( D T ⊗ D ) − 1 ⋅ ( D T ⊗ D o b s ) X_{est}=D·(D^T \otimes D)^{-1}·(D^T\otimes D_{obs}) Xest=D(DTD)1(DTDobs)

http://www.hengruixuexiao.com/news/14840.html

相关文章:

  • 网站icp备案证明文件seo诊断服务
  • 软件市场下载成都百度推广和seo优化
  • 学做网站论坛会员账号如何自己做网页
  • 网站404页面源码seo如何优化关键词排名
  • 手机软件制作器下载seo优化常识
  • 谷歌地图网站代码种子资源地址
  • wordpress gitignore系统优化大师
  • 东莞市官网网站建设品牌百度推广登录后台
  • 有没有可以做翻译的网站线上推广具体应该怎么做
  • 网站建设中 怎么办河南网站建设公司哪家好
  • 网站推广小助手中国培训网的证书含金量
  • 怎样做个做外贸的网站网络营销渠道策略有哪些
  • 西安 餐饮 网站建设seo服务如何收费
  • 网站建设模拟软件cnzz站长统计工具
  • 用模板怎么做网站新手如何找cps推广渠道
  • 做网站的难题微信推广软件
  • 长沙传媒公司舟山seo
  • 南昌网站排名优化流程优化的七个步骤
  • 手机网站开发 图库类seo专员是指什么意思
  • 建筑通搜索引擎优化的方法
  • 网站优化个人工作室网站建设在线建站
  • 手机网站打开速度媒介
  • 网站建设的费用入账如何进行seo
  • 网站建设企业站内推广
  • 怎样提高网站打开速度慢百度移动排名优化软件
  • 网站做新闻外链有作用吗推广软文范文
  • 海门市规划建设局网站巨量算数数据分析
  • 网站建设和运营互联网广告行业分析
  • 百度有没有做游戏下载网站怎么做平台推广
  • 网站建设与制作段考试题东莞网站建设最牛