zhi做网站网站为什么要做seo
多模态输出:图像和文本
这个示例展示了如何使用非文本生成工具来创建多模态代理。
本例仅限于文本和图像输出,并使用UUID在工具和代理之间传输内容。
本例使用Steamship生成和存储生成的图像。生成的内容默认受到身份验证保护。
您可以在这里获取Steamship API密钥:https://steamship.com/account/api
import refrom IPython.display import Image, display
from steamship import Block, Steamship# 导入所需的库
# re用于正则表达式
# Image和display用于显示图像
# Block和Steamship是Steamship库的组件
from langchain.agents import AgentType, initialize_agent
from langchain.tools import SteamshipImageGenerationTool
from langchain_openai import OpenAI# 导入LangChain相关的库
# AgentType和initialize_agent用于初始化代理
# SteamshipImageGenerationTool是用于图像生成的工具
# OpenAI是LangChain的OpenAI接口
llm = OpenAI(temperature=0)# 初始化OpenAI语言模型,temperature设为0表示输出最可能的结果
DALL-E
tools = [SteamshipImageGenerationTool(model_name="dall-e")]# 创建一个使用DALL-E模型的图像生成工具列表
mrkl = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)# 初始化代理,使用之前定义的工具和语言模型
# 代理类型为ZERO_SHOT_REACT_DESCRIPTION,verbose=True表示输出详细信息
output = mrkl.run("How would you visualize a parot playing soccer?")# 运行代理,生成一个鹦鹉踢足球的图像
def show_output(output):"""Display the multi-modal output from the agent."""UUID_PATTERN = re.compile(r"([0-9A-Za-z]{8}-[0-9A-Za-z]{4}-[0-9A-Za-z]{4}-[0-9A-Za-z]{4}-[0-9A-Za-z]{12})")outputs = UUID_PATTERN.split(output)outputs = [re.sub(r"^\W+", "", el) for el in outputs] # Clean trailing and leading non-word charactersfor output in outputs:maybe_block_id = UUID_PATTERN.search(output)if maybe_block_id:display(Image(Block.get(Steamship(), _id=maybe_block_id.group()).raw()))else:print(output, end="\n\n")# 定义一个函数来显示代理的多模态输出
# 使用正则表达式匹配UUID
# 如果找到UUID,则显示对应的图像
# 否则打印文本输出
Stable Diffusion
tools = [SteamshipImageGenerationTool(model_name="stable-diffusion")]# 创建一个使用Stable Diffusion模型的图像生成工具列表
mrkl = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)# 使用Stable Diffusion工具重新初始化代理
output = mrkl.run("How would you visualize a parot playing soccer?")# 再次运行代理,使用Stable Diffusion生成鹦鹉踢足球的图像
总结
本文介绍了如何使用非文本生成工具创建多模态代理。示例限于文本和图像输出,并使用UUID在工具和代理之间传输内容。文章使用Steamship来生成和存储图像,并展示了如何使用DALL-E和Stable Diffusion模型生成图像。
扩展知识
-
多模态AI:这种AI系统能够处理和生成多种类型的数据,如文本、图像、音频等。它们在更复杂的任务中表现出色,因为可以综合利用不同类型的信息。
-
DALL-E:这是OpenAI开发的一个AI模型,能够根据文本描述生成图像。它以其创造性和多样性而闻名。
-
Stable Diffusion:这是另一个流行的图像生成AI模型,由Stability AI开发。它以其快速的生成速度和高质量的输出而著称。
-
LangChain:这是一个用于开发以语言模型为中心的应用程序的框架。它提供了许多工具和抽象,使得构建复杂的AI应用变得更加简单。
-
Steamship:这是一个AI开发平台,提供了多种AI服务,包括图像生成和存储。在本例中,它被用来生成和管理图像。
-
UUID(通用唯一识别符):这是一种标准化的标识符,用于在分布式系统中唯一标识信息。在此示例中,它被用来标识和检索生成的图像。